Model 346 Chart recorder

Installation and operation manual

Declaration of Conformity

Manufacturer's name:	Eurotherm Recorders Limited
Manufacturer's address	Dominion Way, Northing, West Sussex, BN14 8QL, United Kingdom.
Product type:	Industrial chart recorder
Models:	$344 \quad$(Status level A13 or higher) (Status level A13 or higher) (Status level A9 or higher)
Safety specification:	$\mathbf{3 4 5}$
EMC emissions specification:	EN50081-2 (Group1; Class A)
EMC immunity specification:	EN50082-2

Eurotherm Recorders Limited hereby declares that the above products conform to the safety and EMC specifications listed. Eurotherm Recorders Limited further declares that the above products comply with the EMC Directive 89 / 336 / EEC amended by 93 / 68 / EEC, and also with the Low Voltage Directive 73 /23 / EEC

Signed for and on behalf of Eurotherm Recorders Limited
Peter De La Nougerède

IA249986U120 Issue 2 Dec 96
© 1998 Eurotherm Recorders Ltd.
All rights are strictly reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, without the prior, written, permission of the copyright owner.

Eurotherm recorders Ltd. reserves the right to alter the specification of its products from time to time without prior notice. Although every effort has been made to ensure the accuracy of the information contained herein, it is not warranted or represented by Eurotherm Recorders Ltd. to be a complete or up-to-date description of the product.

MODEL 346
INSTALLATION AND OPERATION MANUAL

LIST OF CONTENTS	
SECTION	TITLE
1	OVERVIEW
2	INSTALLATION
3	OPERATION
4	CONFIGURATION
5	OPTIONS
6	SERVICING
ANNEX A	CONFIGURATION GUIDE

Full contents lists appear at the beginning of each section, and a comprehensive index is to be found at the end of the manual.

LIST OF EFFECTIVE PAGES

This (issue 5) manual consists of the following pages at their specified issue numbers:

Section i

Page i-1
Page i- 2
Page i-3
Page i-4

Section 1

Page 1-1 Page 1-2
Page 1-3
Page 1-4

Section 2

Page 2-1
Page 2-2
Page 2-3
Page 2-4
Page 2-5
Page 2-6
Page 2-7
Page 2-8
Page 2-9
Page 2-10
Page 2-11
Page 2-12

Section 3

Page 3-1
Page 3-2
Page 3-3
Page 3-4
Page 3-5
Page 3-6
Page 3-7
Page 3-8
Page 3-9
Page 3-10
Page 3-11
Page 3-12
Page 3-13
Page 3-14
Page 3-15
Page 3-16
Page 3-17
Page 3-18
Page 3-19
Page 3-20
Page 3-21
Page 3-22
Page 3-23
Page 3-24
Page 3-25
Page 3-26

Section 4

Page 4-1
Page 4-2
Page 4-3
Page 4-4
Page 4-5
Page 4-6
Page 4-7
Page 4-8
Page 4-9
Page 4-10
Page 4-11
Page 4-12
ssue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
ssue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98

Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98

Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98

Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98
Issue 5 Mar 98

Page 4-13
Page 4-14
Page 4-15
Page 4-16
Page 4-17
Page 4-18
Page 4-19
Page 4-20
Page 4-21
Page 4-22
Page 4-23
Page 4-24
Page 4-25
Page 4-26
Page 4-27
Page 4-28
Page 4-29
Page 4-30
Section 5
Page 5-1
Page 5-2
Page 5-3
Page 5-4
Page 5-5
Page 5-6
Page 5-7
Page 5-8
Page 5-9
Page 5-10
Page 5-11
Page 5-12
Page 5-13
Page 5-14
Page 5-15
Page 5-16
Page 5-17
Page 5-18
Page 5-19
Page 5-20
Page 5-21
Page 5-22
Page 5-23
Page 5-24
Page 5-25
Page 5-26
Page 5-27
Page 5-28
Page 5-29
Page 5-30
Page 5-31
Page 5-32
Page 5-33
Page 5-34
Page 5-35
Page 5-36
Page 5-37
Page 5-38
Page 5-39
Page 5-40
Page 5-41
Page 5-42
Page 5-43
Page 5-44
Page 5-45
Page 5-46
Page 5-47

Issue 5 Mar 98
Issue 5 Mar 98 Issue 5 Mar 98
Page 5-48
Page 5-49
Page 5-50
Page 5-51
Page $5-52$
Page 5-53
Page 5-54
Page 5-55
Page 5-56
Page 5-57
Page 5-58
Page 5-59
Page 5-60
Page $5-61$
Page 5-62
Page 5-63
Page 5-64

Section 6
Page 6-1
Page 6-2
Page 6-3
Page 6-4
Page 6-5
Page 6-6
Page 6-7
Page 6-8
Page 6-9
Page 6-10
Page 6-11
Page 6-12
Annex A
Page A-1
Page A-2
Page A-3
Page A-4
Page A-5
Page A-6
Page A-7
Page A-8
Page A-9
Page A-10
Page A-11
Page A-12
Page A-13
Page A-14
Page A-15
Page A-16
Page A-17
Page A-18
Page A-19
Page A-20
Page A-21
Page A-22
Page A-23
Page A-24
Page A-25
Page A-26
Page A-27
Page A-28
Page A-29/30
Index
Page 1
Page 2
Page 3
Page 4

Issue 5 Mar 98
Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98

Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98

Issue 5 Mar 98 Issue 5 Mar 98

Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98 Issue 5 Mar 98

Safety Notes

1. Before any other connection is made, the protective earth terminal \square shall be connected to a protective conductor. The Mains (supply voltage wiring must be terminated in such a way that, should it slip in the cable clamp, the Earth wire would be the last to become disconnected.

WARNING!

ANY INTERRUPTION OF THE PROTECTIVE CONDUCTOR INSIDE OR OUTSIDE THE APPARATUS, OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO MAKE THE APPARATUS DANGEROUS UNDER SOME FAULT CONDITIONS. INTENTIONAL INTERRUPTION IS PROHIBITED.
2. Whenever it is likely that protection has been impaired, the unit shall be made inoperative and secured against unintended operation. The nearest manufacturer's service centre should be contacted for advice.
3. Any adjustment, maintenance and repair of the opened apparatus under voltage, should be avoided as far as possible and, if inevitable, shall be carried out only by a skilled person who is aware of the hazard involved.
4. Where conductive pollution (e.g. condensation, carbon dust) is likely, adequate air conditioning/filtering/ sealing etc. must be installed in the recorder enclosure.
5. Signal and supply voltage wiring should be kept separate from one another. Where this is impractical, shielded cables should be used for the signal wiring.
6. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment might be impaired.
7. For portable instruments, relays may be wired only to SELV-E

sYMBOLS USED ON THE RECORDER LABELLING

One or more of the symbols below may appear on the recorder labelling.

!	Refer to the Manual for instructions
	Protective Earth
-	This recorder for ac supply only
--	This recorder for dc supply only.
	Risk of electric shock

Static electricity

All circuit boards associated with the recorder contain components which are susceptible to damage caused by static electrical discharge of voltages as low as 60 Volts.

Should it be necessary to handle such circuit boards, appropriate precautions must first be taken to ensure that the recorder, the circuit board, the operator and the work area are all at the same electrical potential.

346 INSTALLATION AND OPERATION MANUAL SECTION 1 OVERVIEW LIST OF CONTENTS

Section Page
1.1 INTRODUCTION 1-2
1.2 RECORDER DESCRIPTION 1-2
1.3 SPECIFICATION 1-2
HARDWARE RANGES 1-2
1.4 MEMORY PROTECTION 1-4

INSTALLATION CATEGORY AND POLLUTION DEGREE

This product has been designed to conform to BS EN61010 installation category II and pollution degree 2. These are defined as follows:

INSTALLATION CATEGORY II
The rated impulse voltage for equipment on nominal 230 V ac mains is 2500 V .

POLLUTION DEGREE 2

Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected.

1.1 INTRODUCTION

This manual is intended to familiarise the user with the installation, operation and maintenance of the Model 346 recorder. The manual is organised into sections, as follows:

Section 1 describes the manual and its organisation, and includes the recorder specification.
Section 2 contains mechanical and electrical installation procedures, including the placement of circuit board links as appropriate.

Section 3 describes the operation of the recorder. Mechanically, chart, printhead and battery replacement are described. The recorder display/keyboard and the associated operator menu are also described

Section 4 covers the setting-up (configuration) of the basic recorder to user requirements.
Section 5 details the recorder configuration of options such as totalisers, derived channels (maths pack) etc.
Section 6 gives information on simple servicing, using the recorder self checking, calibration and Instrument alarm features. Also included is a list of spare parts.

Annex A is a quick reference guide to the recorder configuration, including a description of all the configurable parameters, and an 'access to configuration' diagram showing the complete configuration menu arrangement.

1.2 RECORDER DESCRIPTION

The Model 346 recorder is a user configurable 1 to 6 input, multipoint 100 mm . calibrated-width instrument using digital indication to display measured value. The use of modular construction and surface-mount circuit card technology ensures a compact design which is easy to maintain and upgrade.

Configuration is carried out using the recorder display and integral keyboard. The Configuration Menu is divided into sections for fast basic set-up, and for selection of only those functions needed for a particular application.

1.3 SPECIFICATION

HARDWARE RANGES

The specification which follows, contains references to 'Hardware Ranges'. When an input range is defined, the recorder chooses the lowest hardware range (i.e. the most accurate) that will cover the specified input range. (Table 1.3 gives details of the ranges.) The user can, if he wishes, force the recorder to use a specific hardware range, using the channel range calibration pages described in section 6 of this manual.

HARDWARE RANGE	I/P	PEN	MINIMUM
ACCURACY	ACCURACY	SPAN	
-4.0 to +20 mV	$\pm 0.02 \mathrm{mV}$	$\pm 0.04 \mathrm{mV}$	4 mV
-12.0 to +60 mV	$\pm 0.06 \mathrm{mV}$	$\pm 0.12 \mathrm{mV}$	15 mV
-16 to +80 mV	$\pm 0.08 \mathrm{mV}$	$\pm 0.16 \mathrm{mV}$	20 mV
-40 to 200 mV	$\pm 0.20 \mathrm{mV}$	$\pm 0.40 \mathrm{mV}$	50 mV
-80 to 400 mV	$\pm 0.40 \mathrm{mV}$	$\pm 0.80 \mathrm{mV}$	100 mV
-0.34 to 1.7 V	$\pm 1.7 \mathrm{mV}$	$\pm 3.4 \mathrm{mV}$	425 mV
-0.50 to +2.5 V	$\pm 2.5 \mathrm{mV}$	$\pm 5 \mathrm{mV}$	625 mV
-1.00 to +5.0 V	$\pm 5 \mathrm{mV}$	$\pm 10 \mathrm{mV}$	1.25 V

Table 1.3 Hardware ranges, minimum spans, input and pen accuracies.

1.3 SPECIFICATION (Cont.)

[^0]
1.3 TECHNICAL SPECIFICATION (Cont.)

1.4 MEMORY PROTECTION

There are three areas of memory in the recorder as follows:-

1. EEPROM internal to the microprocessor on the main board.
2. Separate EEPROM located on the main board.
3. Battery-backed RAM or auxiliary EEPROM located with the operating program.

The microprocessor EEPROM stores channel information, as follows:

1. Channel ranges

6 CJC source (internal or external)
2. Channel inputs
3. Chart spans
4. Filter settings
5. Linearisations

7 Units selection
8 Channel status (on or off)
9 Channel 1, 2, 3 alarm settings

The separate EEPROM stores mainly 'instrument' information as follows:-

1. Chart speed and units 6 Alarm access status
2. Logged channels and totalisers
3. Batch number
4. Password

5 Channel descriptors

7 Pen calibration
8 Magnification
9 Magnified channel Ns
10 Print mode choice

11 ID number
12 External CJ temperature
13 Decimal point positions
14 Annotator calibration
15 Time format

The battery backed RAM (or auxiliary EEPROM) stores mainly option information, as follows:

1. Alarm messages
2. Communications
3. Totaliser values
4. Custom curve
5. Re-transmission
6. Soft key
7. DV calculations
8. Custom messages
9. Trace History
10. Timers
11. Relay configurations
SECTION 2 INSTALLATION
LIST OF CONTENTS
Section Page
2.1 UN PACKIN G 2-3
2.1.1 CHASSIS REMO VAL 2-3
2.2 MECHAN ICALIN STALLATIO N 2-4
2.3 ELEC TRICAL IN STA LLATIO N 2-5
2.3.1 SUPPLY VO LTAGE W IRIN G 2-6
2.3.2 SIGNALW IRIN G 2-6
THERM O CO UPLE IN PUTS 2-6
DIRECT VO LTAGE IN PUTS UP TO 5 VO LTS DC 2-6
ATTEN UATED DC VO LTAGE IN PUTS ABO VE 5 VO LTS 2-7
RTD (RESISTA N CE TEM PERATURE DETECTO R) IN PUTS 2-7
CONTACT IN PUT (EVENT) CONNECTIO NS 2-7
CURREN T IN PUTS (REC O RDER SUPPLY) 2-8
CURREN T IN PUTS (EXTERN AL SUPPLY) 2-8
2.4 CIRCUIT BO ARD LINKS 2-9
2.4.1 IN PUTCHANNELCON FIG URATIO N RULES 2-10
2.4.2 CHANNELTHERMOCOUPE / RTD LINK 2-10
2.4.3 THERM O C O UPLE FAILSAFE (UP - DO W N) UN KS 2-10
2.4.4 CJC LIN K 2-10
2.4.5 CIRCUIT BO ARD LO CATIO N 2-11
O PTIO N BO ARD TYPES 2-11

This page is deliberately left blank

2.1 UNPACKING

The recorder is shipped in a special pack, designed to ensure adequate protection during transit. Should the outer box show signs of abnormal wear or damage, it should be opened immediately and the recorder examined. If there is evidence of damage, the instrument must not be operated, and the local representative should be contacted for instructions.

After removing the recorder from its packing, the packing should be examined before it is discarded to ensure that all accessories and documentation have been removed.

2.1.1 CHASSIS REMOVAL

Figure 2.1.1a Cassette removal

Open the door of the recorder.
Depress the latch at the lower right corner of the chart cassette (figure 2.1.1a). Pull the cassette up and out until it disengages from the recorder chassis.

Locate the chassis jacking bolt shown in figure 2.1.1b and release the recorder chassis from the case by rotating the bolt anti-clockwise. This also has the effect of disconnecting all rear terminal board connections (including power) to the recorder chassis

Note...
If the recorder has been installed, it should be isolated from mains (line) power, before it is removed from the case.

Figure 2.1.1b Jacking bolt location

2.1.1 CHASSIS REMOVAL (Cont.)

Once removed from the case, the recorder should be inspected for mechanical integrity. If the recorder is to be stored before use, return it to the case, and replace it in the plastic bag in which it was received.

2.2 MECHANICAL INSTALLATION

The recorder is intended for installation in a 138 mm square cutout in a vertical or sloping (up to 45 degrees from vertical) panel.

Note...
The annotator printing mechanism is somewhat position sensitive. If the recorder is to be mounted in a sloping panel refer to the 'Printing Adjustments' section (6.4) for dot intensity adjustment.

The instrument is inserted through the panel cutout, from the front. It is then secured by using two DIN type clamps as shown in Figure 2.2. These clamps can be fitted to the top, bottom or either side of the case, but opposite sides should be used whenever possible.

It is sometimes helpful to centre-punch the rear face of the panel at the contact points for the clamps. This will keep the clamps from "wandering" as they are tightened.

CAUTION

IT IS IMPORTANT NOT TO USE EXCESSIVE FORCE WHEN TIGHTENING THE CLAMPS. THE USE OF FORCE GREATER THAN THAT WHICH IS NECESSARY TO SECURE THE CASE, MAY DEFORM IT, AND PREVENT PROPER WITHDRAWAL OF THE RECORDER FROM ITS CASE.

To demount the recorder case, loosen the clamps and gently prise them from the case.

2.3 ELECTRICAL INSTALLATION

All electrical connections are made at the rear of the recorder case. In order to gain access to the terminals, the rear terminal cover has to be removed by gently prising it off with a small screwdriver or similar blade. With the cover removed, the rear terminal panel is revealed as depicted in figure 2.3 , which shows the complete range of channel input and option terminations.

CAUTION

THE TERMINATION OF WIRING TO THE RECORDER DEPENDS ON THE NUMBER OF CHANNELS AND OPTIONS FITTED TO THE RECORDER. THE DEFINITION OF 'AS-SHIPPED' CONNECTIONS IS GIVEN ON A LABEL LOCATED ON THE INSIDE OF THE REAR TERMINAL COVER OF THE RECORDER.

CAUTION

DAMAGE WILL BE CAUSED TO THE TERMINALS IF THE TERMINAL SCREWS ARE OVER-TIGHTENED. THE RECOMMENDED MAXIMUM TORQUE IS 0.4 Nm .

Figure 2.3 Rear terminal panel connections
Note...Use of $2.5 \mathrm{~mm}^{2}$ cable is recommended for supply (mains) voltage wiring

2.3.1 SUPPLY VOLTAGE WIRING

This product is designed for use with a filtered Mains supply. If a filtered supply is not available, a Mains Lead Filter Option is available from the manufacturer.

WARNING

MAINS (LINE) EARTH MUST BE MADE TO THE SAFETY EARTH CONNECTION AS SHOWN IN FIGURE 2.3, PREFERABLY USING AN M5 SOLDER OR CRIMP TAG. UNDER NO CIRCUMSTANCES MAY THE SAFETY EARTH BE CONNECTED TO THE UNMARKED TERMINAL NEXT TO THE LINE TERMINAL.

CAUTION

24V AC SUPPLIES MUST BE ISOLATED FROM MAINS. 24 V DC SUPPLIES MUST EITHER BE ISOLATED OR NEGATIVE EARTH. FAILURE TO ENSURE THIS WILL RESULT IN THE RUPTURING OF THE RECORDER INPUT FUSE OR THE TRIPPING OF ANY RESIDUAL CURRENT DEVICE IN THE CIRCUIT.

Withdraw the recorder from the case. Note the Recorder ON / OFF switch on the panel just below the jacking bolt This switch must be in the OFF position when the chassis is returned to the case after Supply Voltage wiring.

Locate the supply voltage selector switch on the right-hand side of the chassis (figure 2.3.1). Set this switch to agree with the voltage to be connected to the case terminals. Locate the line fuse on the main board, adjacent to the line input terminal. If necessary change the fuse to suit the supply voltage. (1 A for 120 V . supply, 500 mA for 240 V supply). See section 6 for appropriate fuse part numbers.

Figure 2.3.1 Voltage selector switch settings

2.3.2 SIGNAL WIRING

The recorder can be connected and configured to operate with a variety of signal sources such as: Thermocouples, RTDs, DC Current, DC Voltage and Contact (event) Inputs. The configuration of the recorder for a specific type of input may require the moving of one or more links on the channel amplifier card and/or the use of input conditioning circuits such as shunts and voltage dividers. The positions of the various connectors on the terminal panel are shown in figure 2.3. Connection diagrams for various input sources are shown in figures 2.3.2a to 2.3.2e, and the positions of the circuit board linkss are described below in section 2.4.

THERMOCOUPLE INPUTS

Thermocouples are connected directly to the case terminal board using the + and - terminals for the designated channel, as shown in figure 2.3.2a below.

DIRECT VOLTAGE INPUTS UP TO 5 VOLTS DC

Voltage inputs to a maximum of 5 Vdc are connected directly to the recorder input connectors, see figure 2.3.2a.

CAUTION

VOLTAGES ABOVE ± 24 VOLTS WILL DAMAGE THE INPUT CIRCUITRY.

Figure 2.3.2a
Thermocouples and dc inputs up to 5 Volts

2.3.2 SIGNAL WIRING (Cont.)

ATTENUATED DC VOLTAGE INPUTS ABOVE 5 VOLTS

Inputs between 5 V and 100 V dc can be connected only if a 1 Megohm, 100:1 input attenuator is fitted as shown in figure 2.3.2b, below. This results in recorder input voltages of 50 mV with a 5 V signal and of 1 V with a 100 V signal.

Example

A linear voltage which can vary between 2 to 10 volts is to be applied to a recorder channel input. Because anything over 5 Volts exceeds the maximumm input voltage, an attenuator is used. A standard 100:1 attenuator will reduce the voltage range to 20 mV to 100 mV .

Figure 2.3.2b
Input connections for dc voltages above 5 Volts

RTD (RESISTANCE TEMPERATURE DETECTOR) INPUTS

The recorder supplies the actuation current and connections for 100Ω Platinum RTDs (Pt100s). Signal wire size and length must be chosen to ensure that lead lengths are equal and individual leads do not exceed 10Ω each between the recorder and the RTD.

Figure 2.3.2c Input connections for Resistance Thermometers

CONTACT INPUT (EVENT) CONNECTIONS

These optional inputs (figure 2.3.) permit many recorder functions to be controlled by an external contact closure. Connections are made (via switches) between the 'COM' terminal and the relevant input terminals 1 to 6 . Good quality, low resistance 'dry' (not powered) contacts should be used.

See Section 3.4 (Internal triggers and action equations) for a description of the use of Contact inputs.

2.3.2 SIGNAL WIRING (Cont.)

CURRENT INPUTS (RECORDER SUPPLY)

The 24 V dc to operate a transducer can be provided by a recorder-mounted supply which is connected at the terminal board to the shunt (normally 250Ω, converting the 4 to 20 mA signal to 1 to 5 V) (see figure 2.3.2d).

Figure 2.3.2d Current input connections (recorder supply)

CURRENT INPUTS (EXTERNAL SUPPLY)

The connection of a 4 to 20 mA device with a separate, external power supply requires only the use of a shunt resistor to convert the current signal into a voltage input (1 to 5 V with a 250Ω shunt).

Figure 2.3.2e Current input connections (external supply)

2.4 CIRCUIT BOARD LINKS

There are several configuration links along the rear edge of each Input amplifier circuit board. Each channel Amplifier has two links (identifed as TC/RTD \& UP/DOWN on the board printing). In addition, each board has one common Link (CJC/RTD). ALL of these links must be checked and/or set before the recorder is placed into service. Each Link is a set of three pins with a removable shorting block between two of them. Figure 2.4 shows the locations of the links.

Figure 2.4 Input amplifier configuration link locations.

2.4 CIRCUIT BOARD LINKS (Cont.)

2.4.1 INPUT CHANNEL CONFIGURATION RULES

1. If only one channel on a 3-channel card is to measure a direct thermocouple input, it must be Channel 1 .
2. If more than one channel is to be connected for direct thermocouple, channel 1 MUST be one of those channels.
3. If the channel 1 Link is set for 'RTD', no channel on the same board can be used for direct thermocouple input.

Note...
The thermocouple cold junction compensation (CJC) for all three channels on an input amplifier card is measured by the channel 1 circuitry.

2.4.2 CHANNEL THERMOCOUPLE / RTD LINK

The TC/RTD Link within each input amplifier's circuitry must be set to 'TC' (Thermocouples, Millivolt and Voltage or Current inputs) or 'RTD' (Resistance Temperature Detector).

If the centre and 'TC' pins are connected, the channel is set up for thermocouples and other dc inputs. If the centre and 'RTD' pins are connected, the channel is set up for RTDs.

2.4.3 THERMOCOUPLE FAILSAFE (UP - DOWN) LINKS

The UP/DOWN Link for each channel amplifier determines the open input (TC Break or Failsafe) direction for that channel. This function does not operate if the other link for the channel is in the 'RTD' position. Should the input go open circuit, the recorded and displayed values are driven beyond the established range limits in the chosen direction, triggering any appropriate alarms as they go.

If the fail safe feature is not required, the link can be conveniently 'parked' on pin 2 at right angles to the rest of the row of pins.

Note...
The fitting of up- or down-scale links causes a slight reduction in measurement accuracy. Thus to gain the maximum from the measurement system, the fail-safe links should not be fitted.

2.4.4 CJC LINK

There is a link just behind the CJC sensor 'finger' on the rear edge of each input amplifier board.
If channel 1 (4) is set up to be connected to an RTD, the CJC link must be in the 'RTD' position. Channel 1 (4) may then be connected only to a resistance thermometer. Channels 2 (5) or 3 (6) can be used either with resistance thermometers or dc inputs, but NOT thermocouples.

If channel 1 (4) is set up to be connected to a thermocouple, then channel 1 (4) may be used to measure a thermocouple or dc input but NOT an RTD input. Channels 2 (5) and 3 (6) can be used for thermocouples, dc inputs or resistance thermometers.

2.4.5 CIRCUIT BOARD LOCATION

There are seven circuit board locations on the recorder chassis: five rear chassis plug-in slots, one main board (containing the microprocessor and chart drive circuitry) located across the chassis bottom and the annotator drive (with battery) board located as shown in figure 2.4.5 The boards located in the five rear slots are as shown in table 2.4.5a, below. The slots are numbered from top (slot 1) to bottom (slot 5).

Figure 2.4.5 Circuit board location diagram

Slot	Board type
1	Input amplifier board (channels 4, 5 and 6)
2	Input amplifier board (channels 1, 2 and 3)
3	Option board
4	Option board
5	Option board

Table 2.4.5a Circuit board locations

OPTION BOARD TYPES

There are 13 types of option board that can be used in the option slots as shown in table 2.4.5b, below. With the exception of Slot 5, any Option board can go into any Option slot. Because of the chassis jacking bolt, the 2, 4 and 6 relay boards and the retransmission boards cannot go into Slot 5 . Separate 2 and 4 relay or Triac boards are available for Slot 5. This limits the maximum number of relays to two boards of 12 (Slots 3 \& 4) and one board of 4 (Slot 5) giving a maximum of 16 relays in all.

Board type	Board description	Possible board locations		
	Slot 3	Slot 4	Slot 5	
1	Two relay board	Yes	Yes	No
2	Four relay board	Yes	Yes	No
3	Six relay board	Yes	Yes	No
4	Two relay board	Yes	Yes	Yes
5	Four relay board	Yes	Yes	Yes
6	Two triac board	Yes	Yes	Yes
7	Four triac board	Yes	Yes	Yes
8	One re-transmission board	Yes	Yes	No
9	Two re-transmission board	Yes	Yes	No
10	three re-transmission board	Yes	Yes	No
11	Six event input board	Yes	Yes	Yes
12	RS422 comms board	Yes	Yes	Yes
13	Six event and RS422 comms board	Yes	Yes	Yes

Table 2.4.5b Option board types and permitted locations

This page is deliberately left blank

SECTION 3 OPERATION

LIST OF CONTENTS

Section Page
CHAN GIN G CHART CA SSETTE TYPE 3-2
3.1 IN TRO DUCTIO N 3-3
3.2 MECHANICALO PERATIO N 3-3
3.2.1 RO \amalg CHART REPLACEMEN T (MANUALCASSETTE) 3-3
3.2.2 RO ШCHART REPLACEM ENT (AUTO TAKE-UP CASSETTE) 3-6
3.2.3 Z-FO D CHART REPLACEM EN T 3-8
PREPARIN G THE CHART 3-8
O PEN IN G THE CASSETTE 3-8
LOADIN G THE CHART 3-9
3.2.4 CHART REVIEW / TEAR-O FF 3-11
CHART REVIEW 3-11
CHART TEAR-O FF 3-11
3.2.5 PRIN THEAD (CARTRIDGE) IN STA LLATIO N AN D REPLACEM EN T - 12
PEN PARK 3-12
CARTRIDG E REPLACEM EN T 3-12
3.2.6 BATTERY REPLACEM EN T 3-13
3.3 CON TRO LPAN ELAND O PERATIN G DISPLAYS 3-14
3.3.1 MEASURED VALUE DISPLAYS 3-14
M ULTI-C HAN N EL DISPLAYS 3-14
SIN G LE CHAN N EL DISPLAYS 3-15
3.3.2 ALARMS 3-15
3.3.3 O PERATO R M EN U 3-16
SO FTKEY 3-16
VIEW TO TALISER 3-16
TO TA LISER RESET 3-18
PRIM ARY CHART SPEED 3-18
CHART ADVANCE 3-18
CHART HOLD 3-18
PEN PARK 3-18
ALARM CONFIGURATION 3-19
BATCH N UM BER 3-19
LO G IN ITIATIO N 3-19
VIEW TIMER 3-19
RAN GEMAGNIFY 3-19
REPLAY HISTO RY 3-20
A LTERN ATIVE CHART SPEED EN ABLE 3-20
ALARM MESSAGE PRINT DISABLE 3-20
VIEW DERIVED VARIABLE 3-20
DERIVED VARIABLE RESET 3-21
M ESSA GE PRIN TIN G 3-21
TIM E AN D DATE SETTIN G 3-21
IN STRUM ENTALARM REVIEW 3-21
3.4 IN TERN AL TRIG G ERS AN D ACTIO N EQ UATIO N S 3-22
EXAM PLES: 3-22
3.5 CHART PRIN TIN G (A N N O TATIO N O PTIO N REQ UIRED) 3-23
3.5.1 IN TRO DUCTIO N 3-23
HIGH SPEED PRIN TIN G 3-23
3.5.2 ALARM MESSAGE PRIN TIN G 3-24
3.5.3 IN STRUM EN T LO G 3-25
3.5.4 CUSTO M MESSAGES 3-25
3.5.5 RAN GE MAGNIFICATIO N 3-26
3.5.6 TRACE HISTO RY 3-26

CHANGING CHART CASSETTE TYPE

When changing from roll to z-fold or from z-fold to roll type cassette, it may be necessary to adjust the latch position to ensure correct gear meshing with the chart drive motor.

In order to carry out this adjustment, remove the recorder from the case and rest it on its left side (as shown in the figure). Release the latch securing screw and adjust the position of the latch such that the gear train on the cassette meshes correctly with the motor gear. (For the sake of clarity, the figure shows the cassette removed.)

When correctly meshed, there should be a few degrees of backlash throughout the gear train

Latch adjustment

SECTION 3 OPERATION

3.1 INTRODUCTION

Section 3 is divided into two main parts. The first part describes mechanical day-to-day operations, such as changing charts and printheads. The second part describes the operation of the display / keypanel, the interpretation of the displays and the 'Operator menu' used for chart control, entry of batch numbers, and other items which do not require the entry of a password in order to access them. Password protected configuration items are described in section 4 (Configuration).

3.2 MECHANICAL OPERATION

3.2.1 ROLL CHART REPLACEMENT (MANUAL CASSETTE)

Figure 3.2.1a Cassette Removal

Figure 3.2.1b Take-up spool removal

Open the door of the recorder and remove the cassette by operating the catch-release, swinging the bottom of the cassette upwards, and carefully pulling it forwards out of the chassis.

Remove the used chart by opening the paper tray as shown in figure 3.2.1b. and lifting the take-up spool out of the cassette.

3.2.1 ROLL CHART REPLACEMENT (MANUAL CASSETTE) (Cont.)

Figure 3.2.1 c Chart removal

Figure 3.2.1d Chart installation

Figure 3.2.1e Chart feed (1)

Figure 3.2.1f Chart feed (2)

Unscrew* the end section of the take-up spool and remove the used chart from the remaining 'stub', as shown in figure 3.2.1c. A slight rotation of the chart, against the direction of winding may assist in the removal.

Re-assemble the take-up spool.

* For recorders manufactured between January 1993 and July 1994, the end section must be pulled off, not unscrewed. When re-assembling such cassettes, it must be ensured that the gearwheel keyway engages with the key on the inside of the stub, and that the gearwheel is pushed fully home. Failure to ensure this can result in faulty chart take-up action.

If necessary, remove the old chart's cardboard spool from the pay-off lugs

Mount a new roll of chart into the supply roll holders, as shown.

Cut or fold the the end of the new chart into a point

Lift the plastic chart guide/paper tear-off and pass the end of the new chart under it (figure 3.2.1e).

Ensuring that the sprocket holes do not get damaged, pull out approximately 30 cm . of chart. Close the chart tear-off guide, ensuring that the chart is located squarely on the sprockets.

3.2.1 ROLL CHART REPLACEMENT (MANUAL CASSETTE) (Cont.)

Figure 3.2.1g Chart feed (3)

Figure 3.2.1h Chart tension adjustment

Figure 3.2.1i
Return of the cassette to the chassis

Insert the chart into the slot in the take-up spool assembly, as shown. Wind approximately two turns of chart onto the take-up spool

Whilst maintaining tension on the chart (by rotating the take-up spool), re-insert the spool into the paper tray. Apply light pressure to the sides of the tray and return it to the closed position. Ensure that the platen is 'clicked' into place.

Tension the chart by holding the drive roller and turning the left-hand exposed take-up flange, as shown.

The cassette can now be returned to the recorder chassis, as shown, and then swung down and pushed inwards until it latches into position.

Ensure that the cassette drive train meshes with the drive gear.

It is recommended that the servo pen alignment procedure (section 6.3.1) is carried out to ensure that the pen zero and span positions match the new chart.

3.2.2 ROLL CHART REPLACEMENT (AUTO TAKE-UP CASSETTE)

Remove the cassette and eject the take-up spool as described in figures 3.2.1a and 3.2.1b above.

Figure 3.2.2a Chart removal

Figure 3.2.2b Chart installation

Figure 3.2.2c Chart feed (1)

Unscrew one end of the take-up spool, and remove the used chart from the remaining 'stub', as shown in figure 3.2.2a. A slight rotation against the direction of winding may assist in the removal.

Re-assemble the take-up spool and refit it in the cassette. Apply light pressure to the sides of the paper tray and return it to the closed position. Close platen, ensuring that it 'clicks' into place

If necessary, remove the old chart's cardboard spool from the pay-off lugs.

Mount a new roll of chart into the supply roll holders as shown.

Lift the plastic chart guide / paper tear-off and pass the end of the new chart under it as shown.

3.2.2 ROLL CHART REPLACEMENT (AUTO TAKE-UP CASSETTE) (Cont.)

Figure 3.2.2d Chart feed (2)

Figure 3.2.2e Return of the cassette to the chassis

Ensuring that the sprocket holes do not get damaged, close the chart tear-off guide, 'clicking' it into position. Ensure that the chart is located squarely such that the horizontal grid lines are parallel with the chart tear-off guide.

Remove excess chart by lifting the free end of the chart upwards and pulling it against the serrations on the tearoff guide.

Return the cassette to the recorder, and swing it down until it latches into position.

Use the 'Chart Advance' feature in the Operator menu (section 3.3.3) to feed the chart into the take-up mechanism. Ensure that the chart flows freely during this takeup process.

It is recommended that the servo pen alignment procedure (section 6.3.1) is carried out to ensure that the pen zero and span positions match the new chart.

3.2.3 Z-FOLD CHART REPLACEMENT

PREPARING THE CHART

Remove the cassette from the recorder, as described in section 3.2.1 above

Remove the chart from its box and fan it (figure 3.2.3a) from both ends. Once this has been done, the chart should be tapped gently on a table or bench. This process removes dust from the chart perforations, which might otherwise build up and eventually clog the cassette mechanism.

Figure 3.2.3a Preparing the chart

OPENING THE CASSETTE

As shown in figures 3.2.3 b and c, access to the chart loading area is by opening the Door Moulding (figure 3.3.2b) then pulling the plastic Paper Guide Assembly away from the roller, allowing the metal Cover Assembly to be hinged out (figure 3.2.3c).

Figure 3.2.3b Opening the cassette

Figure 3.2.3c
Opening the paper guide and cover assembly

3.2.3 Z-FOLD CHART REPLACEMENT (Cont.)

LOADING THE CHART

Figure 3.2.3d Chart loading (1)

Figure 3.2.3e Chart loading (2)

Figure 3.2.3f Chart loading (3)

Orient the chart such that the end with the red stripe is at the bottom of the pack.

Lift the top leaf of the chart and if necessary turn the chart to ensure a) that the calibrated face of the chart will be facing out when the chart is loaded, and b) that the slots in the chart are at the right-hand side of the cassette as viewed from the front of the cassette as installed in the recorder.

Insert the chart into the cassette, and pull approximately 30 cm (1 ft .) of chart between the open paper guide and the roller, as shown in figure 3.2.3d

Fold the free end of the chart, so that it folds naturally, and place the folded end into the take-up tray as shown in figure 3.2.3e

IF THE DIRECTION OF FOLDING IS REVERSED, THE CHART WILL NOT TRANSPORT CORRECTLY, AND WILL FAIL IN OPERATION.

Ensuring that the chart is square with the cassette sides, and that the chart holes are correctly located on the sprockets, carefully push the metal cover assembly to its closed position, and latch it by closing the paper guide moulding over it (figure 3.2.3f) Ensure that it clicks into position.

Close the door moulding, ensuring that it also clicks into position. This sequence is shown in the diagram at the right- -hand end of the cassette

3.2.3 Z-FOLD CHART REPLACEMENT (Cont.)

Figure 3.2.3g Checking paper transport

Check that the chart is passing correctly through the cassette by rotating the pinion as shown in figure 3.2.3g.

Return the cassette to the recorder, and swing it down until it latches into position.

It is recommended that the servo pen alignment procedure (section 6.3.1) is carried out to ensure that the pen zero and span positions match the new chart.

3.2.4 CHART REVIEW / TEAR-OFF

CHART REVIEW

Figure 3.2.4a Chart release

Open the recorder door and open the paper tray as shown.

Figure 3.2.4b Chart review

CHART TEAR-OFF

Figure 3.2.4c Chart tear-off

The take-up spool can now be removed and pulled out, allowing past sections of the chart to be viewed. The take-up spool is returned to the cassette as previously described.

If a section of chart is to be detached, the take-up spool is removed as just described, and the chart is pulled upwards and across, to tear the chart on the serrated edge of the chart tear-off / guide, as shown in the figure.

The relevant parts of the chart replacement procedure should be followed to release the required section of the chart from the take-up spool, and to re-fit the remaining chart to the cassette.

3.2.5 PRINTHEAD (CARTRIDGE) INSTALLATION AND REPLACEMENT

CAUTION

THE PRINTHEAD MAY BE CHANGED ONLY WHEN ITS MOVEMENT IS DISABLED USING THE OPERATOR MENU DESCRIBED BELOW. ANY ATTEMPT TO CHANGE THE PRINTHEAD WHILST IT IS ‘LIVE’ IS LIKELY TO LEAD TO DAMAGE TO THE RECORDER.

PEN PARK

The \rightarrow key is operated to call the first page of the operator menu to the display. The page scroll key is then operated repeatedly, until a 'Pen Park On (Off)' display page appears. The $<\uparrow>$ or $<\downarrow>$ is now used to select pen park ON, and the ENTER key is operated. This causes the pens to fan out, allowing easy access (figure 3.2.5). Further movement of the pens is inhibited until pen park is selected OFF.

CARTRIDGE REPLACEMENT

Once the printhead is parked, the exhausted colour cartridge can be removed by gently pulling on it. The new printhead is now taken out of its package (using the tip protection clip) and inserted onto the colour-select motor shaft (figure 3.2.5). Restrain the cog (drive gear) behind the cartridge with one finger, and gently rotate the colour cartridge until the tab at the rear of the cartridge drops into the associated hole in the cog. It should be ensured that the cartridge is properly retained.

When the recorder is mounted in a sloping panel, the intensity of the printed dots may be reduced, As the rear of the case is lower than the front. See section 6 for dot intensity adjustment details.

Figure 3.2.5 Printhead (colour cartridge) replacement

3.2.6 BATTERY REPLACEMENT

To ensure the protection of accumulated data (Totaliser Values, Trace History, Averages, Maximums, etc.), the RAM Battery should be changed at yearly intervals. For recorders with annotation, if the battery voltage falls below a 'safe' level, or if the battery is missing, a 'battery low' message is printed on the chart after each powerup.

The Clock and Supplementary Memory Protection Battery is mounted on a small circuit board which is plugged onto the top of the annotator board (see figure 2.4.5). When changing this battery this board is removed and discarded (note 2 below), and a replacement board fitted as follows:-

Remove the recorder from its case. Rotate the $1 / 4$ turn fastener and lift the cover between the pen tray and the servo drive board. Using a gentle rocking motion, carefully unplug the battery board from the top of the annotator board, ensuring that the annotator board remains in place.

Fit the new battery board and close the cover, latching it shut using the $1 / 4$ turn fastener. Return the recorder to its case.

Notes...

1. During battery changing, data is retained (on the main board) by means of a capacitor fitted on the annotator board. If the annotator board is removed, or if the battery replacement is not carried out promptly, accumulated data will be lost.
2. Exhausted batteries must be disposed of according to the local environmental regulations covering the type of battery involved. They should not just be 'thrown away'.

Figure 3.2.6 Battery replacement

3.3 CONTROL PANEL AND OPERATING DISPLAYS

The operating displays appear both at the recorder display and at a hand-held terminal if fitted. The hand-held terminal can display only 16 characters, resulting in the loss of the last 4 character positions from the 20 -character recorder display.

Figure 3.3 Control panel key-functions

3.3.1 MEASURED VALUE DISPLAYS

There are two types of operating display: Multi-channel and Single channel. After initialisation is complete, the multi-channel display is presented, showing Channels 1,2 and 3 with channel number, measured value and units-of-measure.

MULTI-CHANNEL DISPLAYS

There will be two Multi-channel displays for 4, 5 or 6 channels and three displays for 7,8 or 9 channels. If all three channels in a display are turned OFF (see section 4 - channel function), that display will not appear.

Multi-channel displays scroll to the next higher group every 12 seconds. Operation of the ENTER key causes the scroll to stop, holding that particular display until another key is operated.

The down arrow key can be used to step through all multi-channel displays; the up arrow key can be used to step through all the multi-channel displays, followed by all the single channel displays.

3.3 OPERATION (Cont.)

SINGLE CHANNEL DISPLAYS

```
Ch Descriptor \uparrow`へ\downarrow
ChN value units I w
```

Single channel displays show the channel descriptor, the channel number, the units-of-measure, the global alarm symbol and up to four individual alarm indication symbols.

Single-channel displays scroll to the next channel every 12 seconds. Operation of the ENTER key causes this scrolling to stop holding that particular display until another key is operated.

There is a single-channel display for every input or derived variable (DV) channel (unless the Linearisation Function or Source DV choice is OFF).

The up or down arrow keys step through the single-channel displays.
Operation of the Clear key causes a return to the first multi-channel display.

3.3.2 ALARMS

An Instrument alarm (inverse video 'l') appears flashing after initialisation. If this 'I' continues to flash for more than 90 seconds, section 6.2 of this document should be referred to for Instrument Alarm information.

The global alarm bell symbol appears flashing whenever any alarm on any channel becomes active. The bell continues to flash until all alarms have cleared.

On multi-channel displays, the alarm channel number also flashes. On single-channel displays, there are four alarm indicator positions in the upper right corner. The symbols which appear there depend on the types of Alarm that are currently active on that channel. The possible symbols and their interpretations are as follows:
$\wedge \quad$ Absolute high
\checkmark Absolute low
$\uparrow \quad$ Rate-of-change rising
$\downarrow \quad$ Rate-of-change falling
$\mid \leftarrow \quad$ Deadband (deviation)

3.3.3 OPERATOR MENU

The Operator Menu is accessed by operating the side arrow key on the recorder display keypanel or the Handheld Terminal. No Password is needed for this menu.

SOFTKEY

Note...
This display appears only if the softkey has been defined as operator accessible in the instrument configuration (described in section 4.9).

A number of functions can be initiated by any one of a number of triggers, as set up in the relevant configuration page. For example, a specific alarm, a specific event input, or a totaliser reaching a preset value could all be configured to operate an alarm relay through what is called an Action Equation page, associated with the relay. One of the triggers available is called the Softkey, and if the softkey is configured to be accessible to the operator, this will allow the operator to trigger any of the functions which has 'softkey' in its action equation.

If all the relevant options are installed, the action equation functions are:

1. Output relay.
2. Replay trace history
3. Selection of alternative chart speed.
4. Initiation of log printing.
5. Change range magnification
6. Printing of a user-entered message.
7. Reset derived variables
8. Reset totaliser
9. Start timer
o. Reset timer.

The ENTER key is operated to select the Soft Key for configuration (on or off).

```
Soft Key ?
```

```
Soft key descriptor
    On / Off
```

The up/down arrow keys are used to turn the soft key function ON and OFF. Selection of ON sends one trigger to functions such as totaliser reset and trace history which require a single input to actuate, reset, etc. Functions such as alarm relays, alternative chart speed and range magnify which are a change of state, receive a continuous trigger for as long as the Soft Key is ON. The descriptor which appears at the top line of the display, is defined as a part of the Instrument Configuration, desccribed in section 4.9.

VIEW TOTALISER

```
View Total.?
```

 N
 The up/down arrow keys are used to select a totaliser for viewing. Once selected an operation of the ENTER key causes the current value held in the totaliser to be displayed. Operation of any key causes a return to the totaliser select display.

3.3.3 OPERATOR MENU (Cont.)

Figure 3.3.3 Operator menu organisation

3.3.3 OPERATOR MENU (Cont.)

TOTALISER RESET

```
Rset Total.?
    N
```

The up/down arrow keys are used to select the totaliser which is to be reset. Refer to the section 5 (Options) for further details. Once the required totaliser number has been selected by operation of the ENTER key, a further operation of the ENTER key is required to initiate the reset.

```
Rset Total.?
ENTER to confirm
```

Notes..

1. The resetting of a totaliser causes an internal trigger, which may have been configured to affect other recorder functions.
2. The totaliser must have been configured as 'Resettable' in the totaliser configuration.

PRIMARY CHART SPEED

```
Pri. Chart Spd
    _XXXX MM/HR
```

The up/down/side arrow keys are used to set the primary chart speed. The speed units ('in/hr' or 'mm/hr') are defined in the instrument configuration menu (section 4.9) and are not configurable from the above display.

CHART ADVANCE

```
Chart Advance
```

 Off
 The up/down arrow keys are used to operate the chart advance. When selected ON, the chart will advance at maximum speed, until selected OFF again.

CHART HOLD

```
Chart Hold ?
    Off
```

The up/down arrow keys are used to operate Chart Hold function.

With hold selected ON, chart motion and annotator printing are inhibited. The tracing of measured values will however continue, and if chart hold is active for extended periods with rapidly changing input signals, damage may be caused to the chart.

PEN PARK

```
Pen Park
    Off
```

The up/down arrow keys are used to stop the chart and to position the pens for replacement. See section 3.2.5 for replacement instructions.

3.3.3 OPERATOR MENU (Cont.)

ALARM CONFIGURATION

Note...
This display appears only if alarm access has been defined as operator accessible in the instrument configuration (section 4.9).

If the alarm configuration has been defined as operator accessible, then the user can carry out a full alarm configuration. Refer to section 4.10 for full details

BATCH NUMBER

```
Batch Number
123456
```

The up/down/side arrow keys are used to define up to six alpha-numeric characters (following the fixed letter ' B ') that are to be printed with the Time Header. The Time Header is printed on Power-up, as the first line of the Log and once in each sequence of Printed Scales.

LOG INITIATION

```
Print Log ?
```

The ENTER key is operated to call the Log up for printing.

```
    Print Log ?
ENTER to confirm
```

The ENTER key is operated again to initiate the printing of the Log. Once started the Log will continue until it is complete. If other actions (such as a chart speed change) occur during the printing of the Log, a line is drawn across the chart to mark the time. Any printing called for by those actions will be delayed until after the Log.

VIEW TIMER

```
View Timer?
```

N

The Up and Down arrow keys are used to select Timer 1 to 4 for access. Operation of the Enter key calls the selected timer's configuration to the display. The configuration can be viewed but not altered. See section 4.12 for details on timer functions.

```
Timer N
    13:00 31 JAN90
```

Operation of the Clear key returns the operator to the menu.

RANGE MAGNIFY

```
Range Magnify
    Off
```

The up/down arrow keys to turn the Range Magnify function ON or OFF.

3.3.3 OPERATOR MENU (Cont.)

REPLAY HISTORY

Replay Hist.?

The ENTER key is operated to select the trace history function.

```
Replay Hist.?
ENTER to confirm
```

The ENTER key is used to initiate operation of history replay.

ALTERNATIVE CHART SPEED ENABLE

```
Alt. Chart Spd
    Off
```

The up/down arrow keys are used to change to the alternative chart speed selected in the instrument configuration. This choice overrides any action equation triggers (section 3.4) in the instrument configuration menu (section 4.9).

ALARM MESSAGE PRINT DISABLE

```
Alarm Msg Cancl
```

The ENTER key is operated to access all, as yet unprinted alarm messages. This feature is particularly useful when the input measurements are known to be in an abnormal state and many alarms have occurred, resulting in a possible backlog of alarm messages.

```
Alrm Msg Cancl
ENTER to confirm
```

A further operation of the ENTER key causes all queued alarm messages to be cancelled.

VIEW DERIVED VARIABLE

```
View DV Val?
```

 N
 The up/down arrow keys are used to select a derived variable for viewing. Once selected an operation of the ENTER key causes the current value of the variable to be displayed. Operation of any key causes a return to the DV select display.

3.3.3 OPERATOR MENU (Cont.)

DERIVED VARIABLE RESET

```
Reset DV?
    N
```

The up/down arrow keys are used to select the variable which is to be reset. Refer to section 5 (Options) for further details. Once the required variable number has been selected by operation of the ENTER key, a further operation of the ENTER key is required to initiate the reset.

```
    Reset DV?
ENTER to confirm
```

Note...
The resetting of a derived variable causes an internal trigger, which may have been configured to affect other recorder functions.

MESSAGE PRINTING

```
Print Message
    NN
```

The up/down arrow keys are used to select a message to be printed. Once selected, a double operation of the ENTER key initiates printing.

Subsequent operation of any key causes a return to the message select display.
Note...
If break-trace mode is selected, the printing of the message will interrupt the traces.

TIME AND DATE SETTING

```
Time & Date
HH:MM DD MMMYY
```

The up/down/side arrow keys are used to enter a time and date. The printing format of the time can be selected as either 12 -hour or 24 -hour in the instrument menu. The format when setting the time is always 24 hour. This display appears only if the annotator driver board is fitted.

INSTRUMENT ALARM REVIEW

Inst. Alarms ?

The ENTER key is used to call the instrument alarms for review. Refer to section 6 for details.

3.4 INTERNAL TRIGGERS AND ACTION EQUATIONS

Many of the standard and optional features of the recorder can be reset, started, stopped etc. in response to internal triggers or to external events. The most common example is a relay responding to an alarm.

The nine types of internal trigger that can modify the recorder operating features are as follows:-
Contact (event) input (external contact closure) (Cl1-CI6)
An active Alarm (A11-A94) (A11 = Channel 1, Alarm 1; A64 = Channel 6, Alarm 4).
The global alarm (bell symbol) becoming active (GLA)
The instrument alarm ('l' symbol) indicating a problem in the self- check diagnostics (INA)
A timer reaching its preset time/date (TM1, TM2).
A totaliser reaching its preset value (TT1-TT6).
A totaliser automatically resetting at 999,999,999 (TR1 - TR6).
The Log Start command (LOG)
Use of the designated 'Soft Key' in the Operator Menu (KEY). See Section 3.3.3
If the relevant option(s) is (are) fitted, the features that can be activated by one or more of these triggers are:Operate alarm relay
Select alternative chart speed
Initiate printing of a log
Print custom message
Reset totaliser
Replay trace history
Initiate range magnification
Reset derived variables
Start/reset timers
The specific effects that a trigger can have are described with each individual feature. However, the means of selecting the internal triggers is the same for all functions. An action equation is a 'Logic OR' statement which defines the trigger (or triggers) that will modify a particular feature. It is entered as a series of trigger codes separated by commas (see examples below). Each action equations page is used to enter up to four triggers. Action equations can be several pages long; for example, 3 pages would be needed for 10 alarms to operate one relay.

EXAMPLES:

1. An action equation for output relay 01 responding to Alarm 1 on Channel 1 (A11) would be:-

2. An action equation for printing custom message 07 in response to alarm 3 on channel 2 OR alarm 1 on channel 3 OR Event Input 3 would be:-
```
CM07 Act Eq P1
A23,A31,CI3,___,
```


3.5 CHART PRINTING (ANNOTATION OPTION REQUIRED)

3.5.1 INTRODUCTION

Three chart printing modes (noprint, over-print and breaktrace) are available and are fully discussed in the instrument configuration description (section 4.9). Briefly,

NOPRINT Turns off all character string printing.
OVERPRINT Prints all character strings without changing the chart speed. Faster chart speeds cause the printing to become taller (see 'High Speed printing', below) The printing appears on top of the channel traces.
BREAKTRACE Interrupts the chart timing to optimise print speed with legibility. The chart speed change, log, alarm and custom messages are printed as quickly as possible by advancing the chart between each line of dots, as soon as each line is finished. Scales are printed at normal chart speed.

Note...
If any change which affects the character of the record (Chart Speed, Trace History, Range Magnify, etc.) takes place whilst other information is being printed, a red line is drawn on the chart when each change occurs. The normal printing for each change is delayed until the current printing job is complete.

Alarm and Custom Messages interrupt all other printing jobs except the Log. An interrupt occurs only after a line of text is completed.

Channel scale/descriptor and Time messages are printed alternately every 5 cm of chart (see figure below).
The channel scale and descriptor message is printed for a particular channel, only if the channel linearisation is not selected OFF in the channel configuration.

The ID/Batch No./Chart Speed/Date/Time line is printed at the next 5 cm . interval after the highest number channel scale.

The channel number is printed in the appropriate colour next to the channel trace, immediately above the descriptor print line.

HIGH SPEED PRINTING

With high chart speeds, text characters become vertically elongated to the extent that they can become difficult to read. For this reason, the following should be noted:

1. Time and channel descriptors are not printed at chart speeds greater than $400 \mathrm{~mm} / \mathrm{hr}$.
2. In overprint mode, alarm messages, custom messages and logging do not occur at chart speeds greater than $400 \mathrm{~mm} / \mathrm{hr}$.
3. In break-trace mode, all printing except time and channel descriptors operate at all speeds.

3.5 CHART PRINTING (Cont.)

Figure 3.5.1
Channel scale, channel descriptor and time-of-day print example (channels 1 and 2 only)

3.5.2 ALARM MESSAGE PRINTING

Alarm messages are printed once when the relevant alarm becomes active (ON) and again when the alarm condition is no longer present (OFF). The symbol printed before the words "On" and "Off" indicates the alarm type. Examples of alarm messages are:

```
P 4:45 13 JAN 89 A11 FEED TEMP HIGH ^Off
P 4:40 13 JAN 89 A11 FEED TEMP HIGH ^On
```

indicating that alarm1 (absolute high) of channel 1 became active at 4:40 in the afternoon of the 13th January 1989 and remained in alarm for five minutes.

Alarm messages will not print during a log. If alarms occur so frequently that they cannot be printed, the Messages are saved and printed as quickly as is permitted by the current print mode. Unprinted Alarm Messages may be cancelled by using the Alarm Message Cancel item in the operator menu.

Note...
If a particular alarm toggles on and off so rapidly that the message printing cannot keep up, then at least the first 'alarm on' and the last 'alarm off' message will be printed; Messages in between may be lost.

3.5.3 INSTRUMENT LOG

Input channels, derived channels and totalisers can be selected for printing. A Log printout is preceded by the ID/Batch/Chart Speed/Date/Time header, and is followed (except in break-trace mode) by a time mark.

Channels are printed as:

	A10:15_	
CH2 FEEDWATER TEMP	102.3	${ }^{\circ} \mathrm{F}$
CH1 REACTOR PRESSURE	$340.0 \quad$ PSIG	
ID35 B123456	200MM/HR 23	OCT89 A10:00_

Totalisers are printed as:

		P2:05_-	
TT2 TOTAL DISCHARGE	343344345	GAL	
TT1 TOTAL FEED FLOW	344345346	GAL	
ID34 B123456 $200 \mathrm{MM} / \mathrm{HR}$	29	OCT89 P	$2: 00 _$

3.5.4 CUSTOM MESSAGES

A custom message can have up to 16 characters, and it is printed whenever one or more internal triggers in its action equation become active. Time is printed with each Message.

Custom Messages are printed as:

BATCH CYCLE DONE	A10:27_
BATCH SOAK START	A 9:57_
BATCH START	A 9:27_

CUSTOM MESSAGE №10

When custom message N 10 is printed, it is followed by the printing of all active channels' scales (providing the chart speed is less than $400 \mathrm{~mm} / \mathrm{hr}$.) and descriptors. This can be used to print scales at the end of a batch, shift or other period.

3.5.5 RANGE MAGNIFICATION

When Range Magnification (see section 5) is actuated by action equation or through the operator menu, all selected traces immediately change range. A line is drawn across the chart and new ranges are calculated by the recorder based on the Magnification Factor.

The measured value at time of initiation is located at the centre, unless a 'Magnification Centre' value has previously been entered as a part of the relevant channel's configuration. See section 5.5 for a full description.

Scale printing during magnification uses the new ranges. When magnification is turned off, all scales are printed before the traces return to their originally configured ranges. Magnified ranges are printed as:

RANGE MAGNIFIED	
CH 2 DISCHARGE FLOW	MGD
2045	70
CH 1 REACTOR PRESSURE	PSIG
740840	940
	*
CH 2 DISCHARGE FLOW	* MGD
0100	* 200
	*
	*
CH1 REACTOR PRESSURE	* PSIG
0500	* 1000

3.5.6 TRACE HISTORY

When Trace History is activated, a line is drawn across the chart. Above the line the history chart speed and 'history start' are printed. After the printing of the Pre-event History, a further line is drawn and identified as 'history trigger', with the trigger time printed at the right edge of the chart.

Because Trace History can have its own magnification, all history scales are printed before the recorder returns to its original status. Trace History is printed as:

SECTION 4: CONFIGURATION
LIST OF CONTENTS
Section Page
4.1 O VERVIEW 4-3
4.2 RECO RDER KEYBO ARD 4-3
4.4 EN TRY OF ALPHANUMERIC DATA 4-5
4.5 G ETTIN G STA RTED 4-5
4.6 PASSW ORD 4-5
4.7 MAIN MENU 4-6
4.8 IN PUT CHAN N ELCON FIG URATIO N 4-8
4.8.1 TRACE O N -O FF-ADAPTIVE 4-8
4.8.2 IN TERPO LATIO N O N -O FF 4-8
4.8.3 PEN COLOUR 4-8
4.8.4 LIN EARISATIO N FUNCTIO N 4-10
4.8.5 CHAN NELUN ITS 4-10
4.8.6 DECIM AL PO IN T PO SITIO N 4-10
4.8.7 PRO GRAMMABLE UN ITS 4-10
4.8.8 IN PUT TYPE 4-11
4.8.9 RAN GES, IN PUTS \& CHART SPAN S 4-11
HIGH AND LOW RANGE 4-12
IN PUTHIGH AND LOW VALUES 4-12
CHARTHIGHAND LOW VALUES 4-12
4.8.10 MAG CENTRE 4-13
4.8.11 IN PUT FILTER 4-13
4.8.12 CJC TYPE 4-13
4.8.13 CHANN ELDESCRIPTO R 4-13
4.8.14 CHANNELADJUST. 4-13
4.9 IN STRUM EN T CO N FIG URATIO N 4-14
4.9.1 A LTERN ATIVE CHART SPEED 4-14
4.9.2 SPEED CHANGE EQUATIO N 4-14
4.9.3 CHART HO LD EQ UATIO N 4-14
4.9.4 PRINTMODE 4-16
4.9.5 ID NUMBER 4-16
4.9.6 TIM E FO RM AT 4-16
4.9.7 CHART SPEED UN ITS 4-16
4.9.8 SO FT KEY 4-17
4.9.9 PASSW ORD 4-17
4.9.10 O PERATO RALARM ACCESS EN ABLE 4-17
4.9.11 CUSTO MER LIN EARISATIO N TABLE CON FIGURATIO N 4-18
CUSTO M CURVE DESCRIPTIO N 4-18
PO IN T CO N FIG URATIO N 4-20
COLD JUNCTION PO IN T PAIR CON FIG URATIO N 4-20
4.9.12 EXTERN ALCJC TEM PERATURE 4-20

LIST OF CONTENTS (Cont.)

4.10 ALARM CON FIG URATIO N 4-21
4.10.1 ALARM CHAN NEL SELECTIO N 4-22
4.10.2 ALARM NUMBER 4-22
4.10.3 ALARM TYPE 4-22
A PPLCATIO N S EXAM PLES 4-23
4.10.4 ALARM SETPO IN T 4-23
4.10.5 ALARM HYSTERESIS 4-23
4.10.6 DEADBAND 4-24
4.10.7 ALARM MESSAGE PRINTENABLE 4-24
4.10.8 RATE BASE 4-24
4.10.9 ALARM MESSAGE 4-24
4.11 IN STRUM EN T LO G 4-26
4.11.1 IN TRO DUCTIO N 4-26
4.11.2 CON FIG URATION PAGES 4-26
LO G G IN G CHAN NELS 4-26
LO G G IN G TO TALISERS 4-26
LO G IN ITIATIO N 4-26
4.12 TIM ER CO N FIG URATIO N 4-28
4.12.1 IN TRO DUCTIO N 4-28
CLO CK TIM ERS 4-28
PERIO DIC TIM ERS 4-28
PO W ER LO SS EFFECTS 4-28
4.12.2 TIMER CON FIG URATION PAGES 4-30
TIM ER TYPE SELEC TIO N 4-30
TIM ER O UTPUT 4-30

SECTION 4 CONFIGURATION

4.1 OVERVIEW

The Main Configuration Menu is divided into sub-menus, some of which appear only if the associated option is fitted. It is recommended that initial configuration follow the Main Menu sequence.

Each sub-menu covers a separate function or area of recorder operation (e.g. ranges, alarms, etc.) and is presented in a logical sequence of choices and value entries. Each sub-menu is discussed separately in the basic configuration order. For a "quick start" to measure and record an input, only the channel and instrument menus need be used.

The recorder display/keyboard can be used for all configuration. The basic format for the display presents the item to configure on the top line, and the choice to be made on the bottom line.

4.2 RECORDER KEYBOARD

In addition to a vacuum fluorescent display with two lines of 20 characters, the display assembly has 6 touch keys:

Up arrow Used to increase a number/letter or to move forward through a selection list.
Down arrow Used to decrease a number/letter or to move backward through a selection list.
IC (Clear) Resets any number/word/selection not entered. Also, backs up one menu level when "E" symbol not lighted. Selections must be "Cleared" up to the Main Menu to take effect.

Side arrow Used to enter Operator Mode and to move the cursor when entering numbers/letters.
Page Used to Enter Configuration Mode and to move forward through a menu level.
Enter Enter or Clear must be used to leave any display after a change has been made and the "E" symbol is lighted in the upper right corner. Changes made will not take effect until Entered.

Figure 4.2 Recorder keyboard

4.3 RECORDER COMMUNICATIONS PORT

Computer entry of numbers, descriptors and units is possible via the configuration port ($1 / 8 \mathrm{in}$ jack socket located as shown in figure 4.3a below).

When wiring the mating $1 / 8$ " stereo plug, the tip contact is terminal $T x$, the centre is $R x$ and the shaft is common, as shown below:

Figure 4.3a Communications socket location

Jack plug wiring for transfer with host computer/dumb terminal
Figure 4.3b Jack plug connections

A terminal emulation program, such as Procomm, must be used to emulate a VT100 terminal, allowing the VT100 keys listed in table 4.3 below to be used. For text entry, the typing-in of the two letters 'o' n ' from any configuration page which is normally used to enter text using the up/down/side arrows (e.g. the programmable units page) will allow the VT100 alpha-numeric keys to be used instead. In order to disable this feature, ' 0 ' f ' f ' is typed-in.

The screen display is similar to the normal recorder display, but characters between \sim and $\sqrt{ }$ (Section 4.4) are not displayed at the terminal screen. If one of these characters is required, it is necessary to read the recorder display.

Recorder key	Any terminal	VT100
Page back	ESC,O,Q	PF2
Page forward	ESC,O,R	PF3
Clear	ESC,O,S	PF4
Up arrow	ESC,[,A	\uparrow
Down arrow	ESC[,B	\downarrow
Right arrow	ESC,[,C	\rightarrow

Table 4.3 Terminal keys
The following information is provided as a guide only. It is the user's responsibility to determine if a particular terminal or computer can be used with the recorder port. The port communications parameters are:

Baud Rate	4800
Parity	None
Data Bits	8
Stop Bits	1
Handshake	None

4.4 ENTRY OF ALPHANUMERIC DATA

The recorder uses a Scroll-and-Select method of alphanumeric data entry. When a word or number entry is required on a configuration display, a cursor will appear at the left end of the second line. The side arrow is used to move the cursor. The up and down arrow keys are used to scroll through a library of numbers (for entry of purely numeric alues) or a library of numbers, letters and characters (to enter a tag name or printed message).

Numbers entered with spaces between will "pack" (i.e. slide to the right) on entry. For example, a number entered as:

When scrolling through the listing, the speed of the scroll will increase after the first six characters and again after the next six characters. Refer to the following Character Library to determine whether to scroll Up or Down to the next desired character.

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_'\{|\}~ \quad ank ÅÆßÉÑöûü§ç ¿ $¢ \partial \varepsilon \theta \phi \pi$

 23456789 :; <=> ? @

4.5 GETTING STARTED

The first configuration step is to enter the configuration mode. This is done by pressing the page key while the recorder is on any display showing a measured value. If unsure of the type of the current display, press CLEAR (C) several times until the display format stops changing. Then press the Page key.

4.6 PASSWORD

In order to access the Main Menu and change the recorder configuration it is necessary to enter the proper 1, 2 or 3-digit Password.

All instruments have a password of " 10 " when shipped, requiring only the entry of the digit " 1 " at the left end cursor to gain initial access. The up arrow key should be operated twice, followed by ENTER.

The entry of a user-selected Password is described in the Instrument configuration section below. (section 4.9).
Note...After a configuration choice has been made on a display, the operation of the ENTER key confirms the choice only for that display. It is usually necessary to press CLEAR one or more times and return to the Main Menu before the choice becomes effective.

4.7 MAIN MENU

If all available options are present, the following items appear in the top level or 'Main' menu:

Channel	Used to enter the type and ranging of the measured input or derived variable along with Filtering, Tagging and Scale Printing information.
Instrument	Used to select chart speed units, alternative chart speed, printing mode, password, ID number, operator alarm, access and definition of the optional user-entered Cus- tom Curve.
Alarm	Used for selecting the type and action of all alarms. Also used to define associated alarm messages.
Relays	Used to assign the optional relay and/or triac contact outputs to alarms, internal triggers and totalisers.
Totalisers (optional)Used to set scaling factors, cut-off limits, reset conditions and tag name of each Totaliser (integrator). Log setup (optional)Used to define the circumstances that can automatically initiate an Instrument Log.	
Log setupUsed to define the circumstances that can automatically initiate an instrument log.	
Custom messages (Optional)Used to define up to ten user-defined messages of up to 16 alphanumeric characters each.TimersFour Clock or Calendar Timers that can be used to initiate logs, print mode changes, chart speed changes, various resets, etc. within the recorder.	
Event Replay (optional)Used to for define the operating parameters associated with: 1. The Trace History Function that stores up to 15 minutes of record history, for replay when a specified action occurs.	
2. The Range Magnify Function that increases the resolution of a record by expand	
ing (on command or automatically), a defined segment of a channel record to full	
scale. Ranges can also be condensed to cover a wider range of input value	
changes.	

Derived variable (optional) Used for the selection and combination of maths ($+,-, x, \pm$, ave, etc.) and predefined function operators (mass flow, $\mathrm{F}_{0}, \mathrm{RH}$, etc.) and constants for up to three calculatedvalue channels.

Communications (optional) Allows communications with a host computer for reading and writing values.
Retransmission (optional) Provides a linearised version of the relevant input signal, scaled 0 to 10 Volts.
Instrument Alarms Used for the indication of the results of the instrument self check features. RAM battery status, operating ROM condition and the integrity of stored configuration data are checked.

Change Calibration Used for instrument calibration (using high precision voltage, resistance and temperature inputs) and for re-entry of the factory calibration stored at manufacture.

Note...
The items marked 'optional' above are described in the Options section of this document (section 5)

MAIN MENU (Cont.)

Figure 4.7 Main menu organisation

4.8 INPUT CHANNEL CONFIGURATION

4.8.1 TRACE ON-OFF-ADAPTIVE

```
C1 Trace
    Off
```

The up or down arrow keys are used to toggle the trace for the channel being configured on or off. The third choice (adaptive) causes extra points to be placed on the chart if large input signal variations occur between normal dotting periods. These dots are traced without advancing the chart, and are normally used with low chart speeds to ensure that any transients are captured.

4.8.2 INTERPOLATION ON-OFF

```
C1 Interplt.
    On
```

The up or down arow key can be used to toggle interpolation on or off for the channel being configured. Interpolation on causes a horizontal line to be drawn between consecutive dots as depicted in figure 4.8.2.

Figure 4.8.2 Interpolation example

4.8.3 PEN COLOUR

```
C1 Pen Color
    Violet
```

The up and down arrow keys can be used to select the colour of the trace for the channel being configured. Scroll up choices are violet, red, black, green,blue and brown. There is no limit to the number of fitted channels which can be allocated to one colour (e.g. all channels could be printed in black).

Default pen colours are: channel 1, violet; channels 2 and 7 , red; channels 3 and 8 , black; channels 4 and 9 , green; channel 5, blue, and channel 6, brown.

4.8 CHANNEL CONFIGURATION (Cont.)

Figure 4.8 Channel configuration menu organisation

4.8 CHANNEL CONFIGURATION (Cont.)

4.8.4 LINEARISATION FUNCTION

```
C1 Lin. Func.
    Linear
```

This page selects the relationship between the input signal and the recorded / displayed value. The up and down arrows are used to scroll through the following possible choices:

OFF The channel value is displayed as OFF, and the trace is printed at the left edge of the chart (unless the trace is turned OFF).
Linear No linearisation is applied to the input signal.
Square root The recorder applies a square root function to the input (eg input =4, output $=2$).
$3 / 2$ power \quad The recorder takes the square root of the input, and raises the result to the power of 3 (e.g. input $=4$; output $=8$).
$5 / 2$ power The recorder takes the square root of the input, and raises the result to the power of 5 (e.g. input $=4$; output $=32$).
Log-Base 10 Applies anti-log function to input signal (eg input $=4$, output $=10,000$).
Custom curve Applies a user-entered linearisation table to the input signal.
Thermocouple Applies Type B, C, E, J, K, L, N, Ni/NiMo, R, S or T linearisation to the input signal.
RTD Applies 10 ohm copper, 100 ohm Pt (ANSI), 100 ohm PT (DIN), 100 ohm Nickel or 120 ohm Nickel resistance thermometer linearisation to the input signal.
Comms 'Comms' must be selected if values are to be written to process variables from a host computer.
Note...
Refer to Section 2.4 for information relating to the input amplifier board links which have to be set according to the type of input.

4.8.5 CHANNEL UNITS

This page allows the up and down arrows to be used to select ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or user-entered units for the channel input signal. These units appear in any display page which includes the relevant channel's units.

4.8.6 DECIMAL POINT POSITION

```
C1 Dec. Point
    X.XXXX
```

The display shows the current position of the decimal point in the channel's displayed variable. The up and down arrow keys can be used to scroll through the choices: $\mathrm{X} . \mathrm{XXXX}, \mathrm{XX} . \mathrm{XXX}, \mathrm{XXX} . \mathrm{XX}, \mathrm{XXX} . \mathrm{X}$ and XXXXX . It should be ensured that the number of decimal places chosen is not beyond the resolution capability of the input transducer, and that the least significant digit(s) do not change so rapidly as to make the display difficult to read.

4.8.7 PROGRAMMABLE UNITS

```
C1 Prog. Units
```

This page appears only when programmable units have been selected in the units display page previously described. The up, down and side arrow keys are used to enter the units string required by the user.

4.8 CHANNEL CONFIGURATION (Cont.)

4.8.8 INPUT TYPE

```
C1 Input type
    Volts
```

This page is used to define the type of input which is connected to the channel. The up and down arrows are used to select Volts, millivolts, Ohms or thermocouple as input type.

For direct connection of thermocouples, 'Thermocouple' should be selected both here and in the linearisation page previously described. For indirect connection, Volts or millivolts as appropriate, should be chosen here, and the relevant thermocouple type in the 'linearisation' page described above.

Input low/high defines the actual electrical input. This must lie within the range of the chosen thermocouple.

4.8.9 RANGES, INPUTS \& CHART SPANS

Range, Input and Chart span entries combine to define how the measurement is presented on the Display and/or Chart.

Range: \quad This is set to include the highest and lowest values to be measured in the Engineering Units to be used.

Range Low and High Values must be entered for all inputs. This is true even for direct TCs and RTDs to permit automatic setting of the recorder internal operating span (gain) for these inputs.

Input: \quad This selection defines the Type of Input to be measured.

Example:

A transmitter ranged for 0 to 1000 litres per minute produces a 4 to 20 mA signal. This is converted to 1 to 5 volts at the recorder by a 250 shunt. The recorder Input is: $\mathrm{lo}=1.00 \mathrm{~V}$.; hi $=5.00 \mathrm{~V}$. The recorder Range is: $\mathrm{lo}=0$ litres per minute $\mathrm{hi}=1000$ litres per minute

The defined Range is used by the recorder to select one of the hardware ranges shown in table 4.8.9 below:

Hardware Range	Input accuracy	Pen accuracy	Minimum span
-4.0 to +20 mV	$\pm 0.02 \mathrm{mV}$	$\pm 0.04 \mathrm{mV}$	4 mV
-12.0 to +60 mV	$\pm 0.06 \mathrm{mV}$	$\pm 0.12 \mathrm{mV}$	15 mV
-16.0 to +80 mV	$\pm 0.08 \mathrm{mV}$	$\pm 0.16 \mathrm{mV}$	20 mV
-40 to +200 mV	$\pm 0.20 \mathrm{mV}$	$\pm 0.40 \mathrm{mV}$	50 mV
-80.0 to +400 mV	$\pm 0.40 \mathrm{mV}$	$\pm 0.80 \mathrm{mV}$	100 mV
-0.34 V to +1.7 V	$\pm 1.7 \mathrm{mV}$	$\pm 3.4 \mathrm{mV}$	425 mV
-0.50 to +2.5 V	$\pm 2.5 \mathrm{mV}$	$\pm 5.0 \mathrm{mV}$	625 mV
-1.00 to +5.0 V	$\pm 5.0 \mathrm{mV}$	$\pm 10.0 \mathrm{mV}$	1.25 V

Table 4.8.9 Ranges, accuracies and spans
In order to measure negative going input signals, it is sometimes necessary to make the recorder select a higher than normal internal span (with a larger 20% negative capability) as described in the channel range calibration description in section 6 of this manual.

Example:

To measure -1.0 V . to 1.0 V ., the recorder must select the -1.0 to 5.0 V . internal span. $\mathrm{A}-100$ to 100 foot range with an input of -1.0 to 1.0 V must be configured as a range of -100 to 500 with an input of 1.0 to 5.0 V .

4.8 CHANNEL CONFIGURATION (Cont.)

4.8.9 RANGES, INPUTS \& CHART SPANS (Cont.)

Chart: In the above example, only the -100 to 100 foot portion of the range is needed on the chart. The chart low/high settings permit the setting of a chart range that is not the same as the channel low/ high range.

HIGH AND LOW RANGE

$$
\begin{gathered}
\text { C1 Range Low/High } \\
\text { X.XXXX units }
\end{gathered}
$$

X.XXXX This is the Low / High end (in Engineering Units) of the Displayed and/or Recorded range. The values are entered using the Up/Down/Side Arrows.

Although the recorder may function beyond the entered TC/RTD range endpoints, performance will be affected once the selected span is exceeded. Stated recorder TC/RTD accuracy is valid only within the entered Range limits.

Example:
A Type J thermocouple range of 0 to 500 degrees F represents a span of 14.993 mV . This Range causes the recorder to choose an operating span of -4.0 to 20.0 mV . Above 663 degrees $F(20 \mathrm{mV})$ the recorded and/or displayed temperature values will not necessarily be within stated accuracy.

Note that the previously selected unit-of-measure will appear on these range displays.

INPUT HIGH AND LOW VALUES

```
C1 Input Low/High
    X.XXXX \Omega,V,mV
```

This display is present only when the Input Type chosen is 'Volts', 'Millivolts' or 'Ohms'. The Up/Down/Side arrow keys are used to define the low and high end electrical input values.

For these Inputs, the internal operating span (gain) will be calculated from the entered Input values. The recorder may function outside these Input settings (up to the maximum Input values permitted), but stated accuracy is valid only within the Input settings.

If 'Ohms' is chosen as the input type and any RTD type chosen as the linearisation function, no input low or high value need to be entered. The internal operating span (gain) will be calculated from the range low/high.

If 'Ohms' is chosen as the input type and 'linear' or 'custom curve' is chosen as the linearisation function, both Input Low and High values must be entered to define a specific resistance input and permit calculation of the internal span.

CHART HIGH AND LOW VALUES

```
C1 Chart Low/High
    X.XXXX units
```

These are the low and high end values of the chart record (not necessarily the same as the Range Low/High values). A segment of the Range can be expanded for more detailed chart recording. Also, the chart span can be greater than the Range, effectively limiting the record to a portion of the chart.

4.8 CHANNEL CONFIGURATION (Cont.)

4.8.10 MAG CENTRE

```
C1 Mag Center
    -D.DDDD units
```

This page allows entry of a value about which the trace will be centred when trace magnification is instigated. See section 5.5 for further details.

4.8.11 INPUT FILTER

```
C1 Filter time
    XX seconds
```

The Input Filter slows the Full-range response of the complete instrument from its normal 0.5 seconds (None) to: $1,2,4,8,16$ or 32 seconds. All functions, including alarm sensing and response, are slowed by this feature. The Up/Down arrow keys are used to change the selection.

4.8.12 CJC TYPE

```
C1 CJC type
    Internal
```

The TC Cold (reference) Junction compensation site (where the signal lead changes from Thermocouple wire or compensated leadwire to copper) can be specified as either the recorder case input terminal board (Internal) or a remote terminal area (External).

The Up/Down Arrows are used to select the appropriate CJC Type. If 'external' is chosen, the temperature of the remote site must be entered in the Instrument Menu (see Section 4.9).

4.8.13 CHANNEL DESCRIPTOR

```
C1 Ch. Descr.
????????????????
```

The Channel Descriptor is a 16-character tag which appears above the current value on a single channel display and is printed on the chart when the channel range is printed or the channels logged. The Descriptor is entered using the Up/Down/Side Arrow keys. See section 4.4 'Entry of Alphanumeric Data' for a list of available characters.

4.8.14 CHANNEL ADJUST

```
C1 Ch. Adjust
    X.XXXX ?????
```

In some cases it is desirable to adjust the displayed and recorded Channel Value to agree with other measurements. The Adjust value is not limited. Positive values add to, and negative values subtract from the measured value.

The Channel Adjustment can also be used to 'zero' an input (such as a load cell) which has a unique input value for a zero output reading. The Up/Down/Side arrow keys are used to enter the amount of adjustment.

4.9 INSTRUMENT CONFIGURATION

4.9.1 ALTERNATIVE CHART SPEED

```
Alt.Chart Spd.
    XXX mm/hr
```

This display is used to establish an alternative (second) chart speed. Any speed between $1 \mathrm{~mm} / \mathrm{hr}$ and 36,000 $\mathrm{mm} / \mathrm{hr}(1 \mathrm{~cm} / \mathrm{sec})$ may be selected in $1 \mathrm{~mm} /$ hour increments. The up/down/side arrow keys are used to set the Chart Speed.

The alternative chart speed is selected on or off, manually from the operator menu (see section 3), or by means of the speed action equation display, below.

4.9.2 SPEED CHANGE EQUATION

```
Spd Act Eq ?
```

The recorder can be made to shift to the alternative chart speed using any of the internal triggers (such as an active Alarm) or an Event (contact) Input. See Section 3.4 for a discussion of Internal Triggers and Action Equations. Press Enter to review or change the action equation:-

This Action Equation defines the internal triggers that can be used to change to the alternative chart speed. The up/down/side arrow keys are used to enter the internal triggers.

4.9.3 CHART HOLD EQUATION

```
Cht Hold Eq ?
```

The chart hold function of the recorder can be initiated using any of the internal triggers (such as an active Alarm) or a Contact (event) Input. See Section 3.4 for a discussion of Internal Triggers and Action Equations. Press Enter to review or change the equation:-

The up/down/side arrow keys are used to enter the internal triggers to be used to initiate chart hold.

4.9 INSTRUMENT CONFIGURATION (Cont.)

Figure 4.9 Instrument configuration menu arrangement

4.9 INSTRUMENT CONFIGURATION (Cont.)

4.9.4 PRINT MODE

```
Print Mode
```

There are three print modes available to allow the configuration of the chart record to meet different recording needs: The up/down arrow keys are used to select the required print mode. At chart speeds greater than 400 $\mathrm{mm} / \mathrm{hr}$. printing is disabled, as described in section 3.5.

NO PRINT MODE No printing; channel traces only.
Note...Features such as Trace History and Range Magnify require the printing of scale data to identify their data properly.

OVERPRINT MODE Trace printing continues. All Annotation is printed over the channel records and at the selected chart speed. Fast chart speeds cause printed characters to be taller.

BREAKTRACE MODE Chart speed timing is interrupted for the Alarm, Log and Custom Messages. Messages are printed at optimum speed for legibility with the chart advancing automatically between printing passes. Scale and Date/Time printing continues at the selected chart speed.

4.9.5 ID NUMBER

ID Number
XX
This number (from 01 to 99) is contained in the ID Number/Chart Speed/Date/Time message which is printed on power-up and before each sequence of chart scales. It is entered using the up/down/side Arrow keys.

4.9.6 TIME FORMAT

```
Time Format
```

 12
 The time printed on the chart can be in 12 hour (AM/PM) format or in 24 hour format. The up/down arrow keys are used to select " 12 " or " 24 ".

4.9.7 CHART SPEED UNITS

```
Chart Spd. Units
    mm/hr
```

 match the spacing of the time lines on the chart to be used. The up/down arrow keys are used for selection.

4.9 INSTRUMENT CONFIGURATION (Cont.)

4.9.8 SOFT KEY

```
Soft key ?
```

Press Enter to access the Soft Key Enable and Descriptor displays. The Soft Key can be used to start, stop or res et any number of internal recorder features by operating any action equation (enter KEY into the equation). It can also be given a unique 14-character name in the Operator Menu. See Action Equations in Section 3.4 for more details.

```
Soft Key En.
    No
```

The up/down arrow keys are used to enable or disable soft key operation from the Operator menu.

```
Soft key Desc.
DESCRIPTOR NO XX
```

The up/down/side arrow keys are used to enter a tag name of up to 14 -characters for the Soft Key. See Section 4.4 for entry of alphanumeric data.

4.9.9 PASSWORD

```
Password
```

 XXX
 A new password of from one to three digits can be defined here. Unless the correct Password is entered, the Main Menu is not accessible for review or edit. Permissible passwords are in the range from 1 to 999. The up/down/ side arrow keys are used to enter the new password.

Note...
As shipped, the recorder password is: 10 .

4.9.10 OPERATOR ALARM ACCESS ENABLE

Alarm Access
On / Off
This display is used to determine whether an operator can access the recorder alarms from the Operator Menu. If the Access is 'ON' no password is needed to change alarm setpoints. If the Access is 'OFF', alarm information does not appear on the Operator Menu. The up/down arrow keys are used to change the selection.

4.9 INSTRUMENT CONFIGURATION (Cont.)

4.9.11 CUSTOMER LINEARISATION TABLE CONFIGURATION

```
Custom Curve
```

The Custom Curve is an 11-point, user-entered linearisation. It is used as one of the linearisation functions (described in Section 4.8) to define the relationship between the input signal and the recorded/displayed value. When this option is present, 'Custom Curve ?' appears in the selection list for the channel Linearisation Function. The ENTER key is used to access the Custom Curve for review or edit.

CUSTOM CURVE DESCRIPTION

The Custom Curve combines the flexibility of a line/segment curve with the curve matching power of a polynomial equation. The curve is defined in five segments, each segment consisting of three point-pairs which are used to calculate a second order polynomial equation for that segment. Segment one is defined by point pairs 1, 2 and 3 , segment 2 by point pairs: 3,4 and 5 , segment 3 by point pairs: 5,6 and 7 , and so on. Adjacent segments share common end points to ensure continuity.

The curve is defined by entering unique point-pair values for all five segments. For proper operation of the curve, all eleven point pairs must be entered.

The first step when using a Custom Curve is to determine the Input and Units values that define it. If the curve is a series of straight lines (such as a tank profile), fewer than five segments may be adequate to define the area to be used.

For Custom Thermocouple curves, a three point Cold Junction Compensation curve must also be entered.
Note...
If any of the 11 Point Pairs are not needed to define the Custom Curve, each pair's signal and unit values must be increasingly greater than the largest signal and unit values which are included in those unique point-pairs which are used (see point pairs eight to 11 in the example, below).

EXAMPLE

The volume of fluid in a tank is to be recorded by using a pressure transmitter mounted at the bottom of the tank. The pressure signal vs. volume is defined by a curve made up of two non-linear segments and one straight line segment, as shown below.

Note...
Because the Custom Curve can be selected as the linearisation function for any channel the Point Pairs carry no range, units-of-measure or input units. When the custom curve is configured, all values in the signal input and range low/high units have to be entered for the channel which is to use the curve.

CUSTOMER CURVE DECIMAL POINT POSITION: SIGNAL

```
Signal D P Pos.
    X.XXXX
```

This decimal position display is for the signal input values. Selection of the decimal position is by using the up/ down arrow keys (see section 4.8.3 for possible settings).

4.9.11 CUSTOMER LINEARISATION TABLE (Cont.)

Figure 4.9.10 Customer linearisation curve example
CUSTOMER CURVE DECIMAL POINT POSITION: UNITS

```
Units D P Pos.
    X.XXXX
```

This decimal position display is for the range unit values. Selection of the decimal position is by using the up/down arrow keys (see Section 4.8.3 for possible settings).

4.9.11 CUSTOM CURVE LINEARISATION (Cont.)

POINT CONFIGURATION

```
Point Pair ?
    XX
```

This display is used to select which of the 11 Point Pairs used to define the curve, is to be configured. The up/ down arrow keys are used to define the relevant number, and the ENTER key is operated to call the next configuration page:-

Note...
All eleven point pairs must be configured whether or not they are all used.

```
Pt. XX Signal
    X. XXXX
```

'Entry' of the point-pair number calls the above display for setting the pair input signal value. This value must be set in the same input values as the Channel which is to use the curve. The value is set using the up/down/side arrow keys. Once the value has been entered, the page-down key is operated to call the next configuration page.

```
Pt. XX Units
    X. XXXX
```

Operation of the page-down key after defining the signal value, calls the above display for setting the pair range units value. This value must be set in the same units of measure as the channel which is to use the curve. This value is entered using the up/down/side arrow keys. Operation of the clear key causes a return to the point-pair definition page, where the number of the next pair to be configured is entered.

COLD JUNCTION POINT PAIR CONFIGURATION

```
CJ Point Pair ?
    N
```

The up/down/side arrow keys are used to select a CJ point-pair for configuration. The subsequent pages allow a three-point Cold Junction Compensation (CJC) curve for use with a thermocouple customer curve. The compensation curve is active only if input type 'Thermocouple' is selected for the channel which is to use the customer linearisation table. Operation of the ENTER key calls the first CJC configuration page.

```
CJ N mV.
    XX.X mV
```

The up/down/side arrow keys are used to enter the millivolt equivalents of the lowest (CJ1), midpoint (CJ2) and highest (CJ3) ambient temperatures that the recorder will encounter whilst using a customer-entered thermocouple linearisation table. The page-down key is operated to call the next configuration page.

```
CJ N Temp
    XX.X *}\mp@subsup{}{}{\circ
```

The up/down/side arrow keys are used to enter in degrees Celcius, the lowest (CJ1), midpoint (CJ2) and highest (CJ3) ambient temperatures that the recorder will encounter whilst using a customer-entered thermocouple linearisation table. The page-down key is operated to call the next configuration page.

4.9.12 EXTERNAL CJC TEMPERATURE

```
Ext. CJC Temp.
    _0.0 *}\textrm{C
```

The up/down/side arrow keys are used to enter the a value in degrees Celsius, for the external CJC choice made during channel configuration.

4.10 ALARM CONFIGURATION

Figure 4.10 Alarm configuration menu arrangement

4.10 ALARM CONFIGURATION (Cont.)

Each channel (including the optional Derived Variable Channels) can have up to four Alarm setpoints. This means that the recorder can have up to 36 alarm setpoints.

4.10.1 ALARM CHANNEL SELECTION

```
Alarm channel ?
    X
```

The up/down arrow keys are used to select the input channel or derived variable for which this alarm is to be configured. Once the channel number has been selected, the ENTER key is used to call the next configuration page:-

4.10.2 ALARM NUMBER

```
Alarm Number ?
    Y
```

Up to four alarms can be allocated to each channel or derived variable. The up/down arrow keys are used to select which of these four is to be configured. Once the selection has been made, operation of the ENTRY key calls the next configuration page.

4.10.3 ALARM TYPE

```
AXY Alarm Type
    Type
```

This page allows the alarm type to be chosen, using the up/down arrow keys. Available alarm types are as follows: Off, absolute high, absolute low, deadband and rate-of change (rising and falling). Once the alarm type has been selected, the page-down key is used to access the SETPOINT display page
$\mathrm{XY} \quad$ Defines the channel number (X) and alarm number (Y) currently being configured. This identifier appears on each alarm configuration page.

Type \quad Off. This selection is used to disable an alarm even when it is fully configured.
Absolute high. This type of alarm is active when the measured value lies above the setpoint value. A hysteresis value can be entered later in the configuration, if required.
Absolute low. This type of alarm is active whenever the measured value lies below the setpoint value. A hysteresis value can be entered later in the configuration, if required.
Deadband (deviation). This type of alarm is active whenever the measured values lies outside a dead band to be specified later in the configuration.
Rate of change rising. This type of alarm is active if the measured value rises at a rate greater than that to be specified later in the configuration.
Rate of change falling. This type of alarm is active if the measured value falls at a rate greater than that to be specified later in the configuration.

Note...
It is recommended that a filter setting of one second is used for rate of change alarms. Longer time periods might slow rapid input changes to below the trigger point, whilst if no filter is used, an input step change might move too quickly for the recorder to measure a rate.

4.10 ALARM CONFIGURATION (Cont.)

4.10.3 ALARM TYPE (Cont.)

APPLICATIONS EXAMPLES

1. RATE-OF-CHANGE, RISING

When a large piece of rotating machinery is cold started, it is important to know if any of the bearings are overheating. An absolute alarm could be used but, during start-up, it would not give a warning until the bearing reached its normal operating temperature, which could be too late.If however, a rate-of-change type of alarm is used, it can be detected that the bearing is heating up more quickly than it should, thus giving advance warning of possible failure, allowing corrective action to be taken before any major damage is done.

2. ABSOLUTE HIGH, WITH HYSTERESIS

If a tank temperature absolute alarm is set to become active at say, $80^{\circ} \mathrm{C}$, then the alarm may become 'jittery' at 80 degrees, since a fall of only 0.1 degrees is sufficient to reset the alarm. Thus, any turbulence within the tank contents could cause the alarm to move continuously into and out of its active state, until the tank contents reached a temperature well above the set point. If the temperature of the tank is actually to be controlled at the setpoint temperature, the situation becomes even more unstable.

This problem is overcome using 'hysteresis', which effectively defines a deadband below the setpoint. In this example, a hysteresis of 5 degrees would still allow the alarm to become active at 80 degrees, but it would not reset until the temperature had fallen to 75 degrees.

4.10.4 ALARM SETPOINT

```
AXY Setpoint
    X.XXXX Units
```

An alarm setpoint is the value against which the measured value is compared. The up/down/side arrow keys are used to edit or enter a setpoint.

Notes...

1 Absolute High and Low setpoints are defined in terms of the measured value and represent levels beyond which an alarm becomes active.
2. A deadband (deviation) setpoint defines the centre of a band of measured values, within which the alarm is not active.
3. A rate-of-change setpoint represents a change in measured value which may not be exceeded (in the period to be configured in the RATE page described below) without the alarm becoming active

4.10.5 ALARM HYSTERESIS

```
AXY Hysteresis
    X.XXXX Units
```

If an absolute or deadband alarm resets exactly at the setpoint or edge of band, it can cycle in and out of Alarm frequently with a very slight change in measured value. Hysteresis prevents this by establishing the number of Units by which the Measured Value must pass the setpoint in the 'out-of-alarm' direction, before the Alarm resets. The up/down/side arrow keys are used to enter the value.

4.10 ALARM CONFIGURATION (Cont.)

4.10.6 DEADBAND

The following display appears only if 'deadband' alarm type, has been previously selected.

```
AXY Deadband
    X.XXXX ?????
```

The up/down/side arrow keys are used to enter a deadband value. This value represents the size of the band (both above and below the setpoint), within which the alarm is not active. For example if the setpoint is 80 units and the dead band is 5 units, then so long as the measured value lies between 75 and 85 units, the alarm will not be active.

4.10.7 ALARM MESSAGE PRINT ENABLE

```
AXY Alrm Print
    On / Off
```

The up/down/ arrow keys are used to select alarm print message on or off. The printed message consists of the time and date of occurrence, the relevant channel and alarm number, the alarm on/off status and the userentered alarm message (if any).

4.10.8 RATE BASE

The following display appears only if 'rate -of-change' alarm type, has been previously selected.

```
AXY Rate base
    /Hour
```

The up/down arrow keys are used to enter a period value of/Hour, /Min or /Sec. The selection determines the period over which the rate-of-change 'setpoint' is to be measured.

4.10.9 ALARM MESSAGE

```
AXY Message
Valve overheat
```

The up/down/side arrow keys are used to enter an alarm message of up to 16 characters for printing when the alarm becomes active or resets. If alarm printing is enabled (see above), this message is printed on the chart along with the time and date of occurrence, the channel and alarm numbers, and the alarm on/off status.

Refer to section 4.4 for text entry details.

4.11 INSTRUMENT LOG

4.11.1 INTRODUCTION

The Instrument log can be configured to print out all active channels (including Derived Channels) and all active Totalisers. Alarm scanning and relay actions continue, but recording of Measured Values and Derived Variable is suspended while the Log is printing.

The Log can be started from the operator menu or by one or more triggers in the log action equation. Once started, the log will continue to completion.

4.11.2 CONFIGURATION PAGES

LOGGING CHANNELS

The ENTER key is used to access the channel log display. The up/down/side arrow keys are used to select those channels which are to appear in the Log.

LOGGING TOTALISERS

The ENTER key is used to access the totaliser log display. The up/down/side arrow keys are used to select the totalisers whose values are to appear in the Log.

LOG INITIATION

Operation of the ENTER key allows editing of the logging action equation. This action equation defines the internal triggers which are to cause the log to print. See Section 3.4 for a discussion of internal triggers and action equations.

4.11 INSTRUMENT LOG (Cont.)

Figure 4.11 Instrument log configuration menu arrangement

4.12 TIMER CONFIGURATION

4.12.1 INTRODUCTION

Four timers are available for controlling recorder tasks. Each of these may be configured to be a periodic timer (which outputs an internal trigger when it reaches its preset duration), or a clock timer (which outputs an internal trigger when it reaches its preset date and time.) See section 3.4 for the listing of internal trigger controlled functions.

CLOCK TIMERS

A clock timer follows the recorder clock time and date. An internal trigger output (TM1 to TM4) occurs when the timer's preset time and date occur. If the year is not entered (blank) the clock timer becomes a yearly repeat timer at the time, day and month set. If the month is also blank, the clock operates as a repeat timer at the same time and day every month.

If the day is also blank, the clock timer operates as a repeat timer at the same time every day. If the hour is also blank, it becomes an hourly repeat timer at the same time every hour.

EXAMPLE

If the clock timer is set for 13:30 17, it will output an internal trigger at 1:30 PM on the 17th of every month.
If the clock timer is set for 13:30, it will output its internal trigger every day at 1:30 PM.
For a weekly timer, set a Clock timer with the complete time and date, for the first reset of a Period timer set to 10,080 minutes

PERIODIC TIMERS

A Periodic Timer starts when entered or when it is reset on command from an internal trigger. It outputs its own internal trigger (TM1 to TM4) after reaching the preset duration. This trigger can be used to reset a periodic timer making it a repeating interval timer.

Note...
The Clock Timer internal trigger can be used to reset the periodic timer at a specific time and date.

POWER LOSS EFFECTS

Upon power loss, the clock timer will continue toward its time/date. If the preset time passes while power is off, no action can occur.

The period timer will re-synchronise to the next period-end after power is returned, if the power loss is for less than 2 hours. For example, if the period timer were configured, using its own internal trigger, and started to repeat every hour on the hour, and if power were returned at 10:35; the timer would run for 25 minutes and then reset at 11:00.

If the loss of power is for more than two hours, the period timer will start again whenever power is restored.

4.12 TIMER CONFIGURATION (Cont.)

Figure 4.12 Timer configuration menu arrangement

4.12.2 TIMER CONFIGURATION PAGES

```
Timer ?
```

X
Use the Up/Down arrow keys to select timer 1, 2, 3 or 4.

TIMER TYPE SELECTION

TM1Type Off

The up/down arrow keys to select one of the following:
Off Timer is turned OFF.
Clock Timer will output its Internal Trigger when the preset Time/Date occurs.
Periodic Timer will output its Internal Trigger when the preset Duration occurs.

TIMER OUTPUT

```
TM1 Clock Out
    HH:MM DDMOnYY
```

The up/down/side arrow keys are used to set the time and date for the output of the internal trigger. The format is: HOUR:MIN DAY MONTH YEAR Hours are set using a 24 -hour clock ($1 \mathrm{PM}=13$ hours). If any of the parameters are left blank, the clock will output its trigger each time the remaining parameters occur, as described above.

PERIOD

```
TM1 Period
123456789 min
```

Use the up/down/side arrow keys to set the duration of the timed period in minutes. The maximum duration is 999,999,999 minutes.

TIMER RESET

Press Enter to review or change the action equation which will reset a period timer. This action Equation defines those internal triggers which are to be used to reset a period timer. See section 3.4 for a discussion of internal triggers and action equations. The up/down/side arrow keys are used to enter action equation internal triggers.

SECTION 5 OPTIONS LIST OF CONTENTS

Section Title
5.1 RELAY OUTPUTS 5-3
5.2 TO TA LISER O PTIO N 5-4
5.2.1 IN TRO DUCTIO N 5-4
EXAM PLE 5-4
TO TA LISER CO UN TER O UTPUT O PTIO N 5-4
5.2.2 CON FIGURATION PAGES 5-4
TO TA LISER TYPE 5-4
TO TA LISER SO URCE 5-5
TO TA LISER FACTO R 5-5
FACTOR CO N FIG URATIO N 5-7
TO TA LISER UN ITS 5-7
PRESET 5-8
LO W CUTO FF 5-8
HIG H CUTO FF 5-8
TO TA LISER RESET 5-8
TO TA LISER RESET ACTIO N EQ UATIO N 5-8
O UTPUT CO UN TER EN ABLE 5-9
DESC RIPTO R 5-9
5.3 CUSTO M M ESSAGE O PTIO N 5-10
5.3.1 M ESSAGE EN TRY 5-10
5.3.2 CO LO UR SELECT 5-10
5.3.3 ACTIO N EQUATIO N 5-10
5.4 TRACE HISTO RY 5-12
5.4.1 IN TRO DUCTIO N 5-12
5.4.2 CON FIGURATION PAGES 5-12
CHART SPEED 5-12
MAGN IFICATION FACTOR 5-12
M A G N IFICATIO N CEN TRE 5-12
CHAN N EL SELEC TIO N 5-13
HISTO RY ACTIO N EQ UATIO N 5-13
5.5 RAN GEMAGNIFY 5-14
5.5.1 IN TRO DUCTIO N 5-14
MAGN IFICATIO N CEN TRE (MEASURIN G CHAN NELS) 5-14
EXAM PLE 5-14
MAGNIFICATIO N CEN TRE (DERIVED CHAN NELS) 5-14
5.5.2 RANGEMAGNIFICATION CON FIGURATION PAGES 5-15
M AGN IFICATIO N FACTOR EN TRY 5-15
MAGNIFICATION CHAN NELEN TRY 5-15
MAGNIFICATIO N ACTIO N EQ UATION 5-15
5.6 DERIVED VA RIA BLES 5-16
5.6.1 IN TRO DUCTIO N 5-16
EXAM PLE 5-17
5.6.2 MATHS FUNCTION S 5-17
RH RELATIVE HUMIDITY. 5-19
ZRO 2SEN SO R ZRO 2
SEN SOR - ZIRCON IA OXYGEN PRO BE. 5-19
DERIVED VARIABLE EXAM PLE 5-20
W O RKSHEET FOR TW O TRAN SM ITTER EXAM PLE 5-21
List of contents (Cont.)
Section Page
5.6 DERIVED VARIA BLES (CONT.)
5.6.3 DERIVED CHAN NELCON FIG URATIO N 5-22
MAGN IFICATION CEN TRE 5-22
5.6.4 DERIVED VARIABLE CO N FIG URATIO N 5-24
DV N UM BER 5-24
DV FUNCTIO N 5-24
DV SO URCE SELECT 5-24
CO N STAN T EN TRY 5-24
DERIVED VARIABLE RESET 5-26
DERIVED VARIABLE DESCRIPTO R 5-26
DERIVED VARIABLE UNITS 5-26
DERIVED VARIABLE DECIMALPO IN T 5-26
5.7 COMMUN ICATIO NS O PTIO N 5-27
5.7.1 IN TRO DUC TIO N 5-27
5.7.2 IN STA LLATIO N 5-27
W IRIN G 5-27
TERM IN ATIN G RESISTO R 5-28
BIASSIN G RESISTO RS 5-28
5.7.3 CON FIGURATIO N 5-29
baud rate 5-29
PA RITY 5-29
FLOW CONTROL 5-29
DISABLE SCHEME 5-29
G RO UP ID (G) 5-29
UN IT ID (U) 5-29
5.7.4 PRO TO COL 5-31
TERM IN O LO G Y 5-31
PO U RESPO N SE 5-32
SELECTIO N SEQ UEN CE 5-33
5.7.5 PARAM ETER ACCESS 5-34
PARAM ETER TABLES. 5-34
5.7.6 DATA FO RM ATS 5-43
5.7.7 CHARACTER SET. 5-46
5.7.8 BASIC PROGRAM 5-48
5.7.9 ‘C' PRO G RAM 5-50
5.7.10 COMMUNICATIO N S PRO BLEM S 5-58
5.8 RETRAN SM ISSIO N O PTIO N 5-59
5.8.1 IN TRO DUCTIO N 5-59
5.8.2 SIGNALW IRIN G 5-60
5.8.3 CON FIGURATION PAGES 5-60
RE-TRA N SM ISSIO N SO URCE 5-60
RE-TRA N SM ISSIO N O UTPUT RAN G E 5-60
RE-TRAN SM ISSIO N LO W AND HIGH OUTPUTS 5-60
5.8.4 CALIBRATIO N 5-61
IN ITIA L SET-UP 5-61
CA LIBRATIO N 5-61
5.9 TRA N SM ITTER PO W ER SUPPLY O PTIO N 5-62
5.9.1 W IRIN G 5-63
SU PPLY VO LTAG E W IRIN G 5-63
FUSES 5-63
SIG N AL W IRIN G 5-63

SECTION 5 OPTIONS

5.1 RELAY OUTPUTS

Up to 16 Relay outputs can be added to the recorder as option cards. See Section 2.4 for option-slot usage choices. All output relays can be configured to operate in response to any internal trigger or external event input (see Section 3.4). Relays can also used for totaliser counter outputs (see Section 5.2).

```
Relay ?
    XX
```

The up/down arrow keys are used to select a relay for configuration. If all 16 relays are fitted, then relays in slot 3 are relays one to six; relays in slot 4 are numbers seven to 12 and relays in slot 5 are numbers 13 to 16 . Operation of the ENTER key calls the next configuration page:

```
RYNN Type
    Type
```

The up/down/side arrow keys are used to choose action equation, totaliser or OFF as relay type

Figure 5.1 Relay configuration menu arrangement

5.2 TOTALISER OPTION

5.2.1 INTRODUCTION

A totaliser is an electronic integrator, primarily used to record the numeric total over time of a measured value that is expressed as a rate - (e.g., the number of gallons (since reset), based on a flow rate in gallons per minute). The totaliser reads the ranged numeric value of its input source once each second. Each reading is divided by the totaliser factor (usually the number of seconds in the Measured Value rate $-/ \mathrm{sec}, / \mathrm{min}$, $/ \mathrm{hr}$, /day), and added to the total.

EXAMPLE

A totaliser is reading a gas flow range of 0 to 1200 cubic feet per minute (CFM). At half flow (600 CFM) the flow rate is $600 / 60$ or 10.0 cubic feet per second. 10 counts will be added to the totaliser each second. A flow rate of 4320 cubic feet per day will give a totaliser input of $4,320 / 86,400=0.05$ per second. $\quad(86,400=$ the number of seconds is a day ie $60 \times 60 \times 24$).

Counts are added in whole units resulting in one count being added every 20 seconds ($20 \times 0.05=1$).
A Totaliser can also be configured to be a Counter responding to contact closures measured by the optional Contact (event) Inputs (see Section 3.4). Count rates can be up to 50 pulses per second. Count rate scaling is described with the totaliser factor.

To begin configuration of a totaliser, the up/down arrow keys are used to select a totaliser number between 1 and 6 , and the ENTER key is operated.

TOTALISER COUNTER OUTPUT OPTION

This feature permits the use of a separately specified output relay to 're-transmit' the totaliser count for use by an external counter or sampling system. Output counts can either be on a 'one-for-one' basis, with the totaliser counts (up to $50 /$ second) or a scaled number (e.g. one output count for every 1000 totaliser counts.)

5.2.2 CONFIGURATION PAGES

TOTALISER TYPE

```
TTN Type
    Type
```

The up/down/ arrow keys are used to choose totaliser type, from OFF, continuous, preset up or preset down.
Note...
A change to any part of the totaliser configuration will cause that totaliser to re-set.
Off The integrating function is disabled.
Continuous The input is summed until the totaliser is reset manually, automatically (at a count of 999,999,999) or by an internal trigger as set up in the appropriate action equation.
Preset down The totaliser will count down from a pre-set number. When zero is reached, the totaliser activates an internal trigger which can be used for, amongst other things, re-setting the count to the preset number, and re-starting the count.
Preset up The totaliser counts from zero up to a pre-set number. When this number is reached, the totaliser activates an internal trigger which can be used for, amongst other things, re-setting the counter to zero, and restarting the count.

Once the type has been selected, operation of the ENTER key calls the next totaliser configuration page.

5.2 TOTALISER CONFIGURATION (Cont.)

TOTALISER SOURCE

```
TTN Source
    Source
```

The up/down/ arrow keys are used to choose the source for the totaliser from measuring channel, derived channel or event input. Once the source has been selected, operation of the ENTER key will call the next configuration page.

TOTALISER FACTOR

```
TTN Factor
    Factor
```

The up/down/side arrow keys are used to enter a factor, according to the type of input specified in the previous page. The factor is entered as a single digit, followed by a power of ten. (See examples below).Channel sourceThe totaliser factor defines the time rate of the source channel in seconds. The page can also be used to define a ratio of measured counts per second to totalised counts. Event input sourceThe totaliser factor defines the scaling (ratio) of input counts to totalised counts.

EXAMPLES

1. To enter in seconds (as required), a time rate measured in hours, the factor is the number of seconds in an hour $=60 \times 60=3,600$, which can be written as 3.6×1000, or alternatively, 3.6×10^{3}

When written in such a way, the value ' 3.6 ' is called the mantissa, and the ' 3 ' in ' 103 ' is called the exponent. The factor is entered in two pages, 3.6 being entered in the 'Mantissa' page, and ' 3 ' in the 'Exponent' page:

```
TT1 Fact Man
    3.6000 Mant.
```

```
TT1 Fact Exp
    3 Exp.
```

2. To enter in seconds, a time rate measured in days, the factor is the number of seconds in a day $(86,400)$. This can be written as $8.64 \times 10,000$ or 8.64×10^{4}. Thus, in order to enter the factor, ' 8.64 ' is entered in the Mantissa page, and ' 4 ' in the exp. page.
```
TT1 Fact Man
    8.6400 Mant.
    TT1 Fact Exp
    4 Exp.
```


5.2 TOTALISER CONFIGURATION (Cont.)

Option
Set output
counter on or off

Figure 5.2 Totaliser configuration menu arrangement

5.2 TOTALISER FACTOR (Cont.)

Commonly used Totalisation Factors are:

	Seconds	Mantissa	Exponent (10 $\left.{ }^{\mathrm{n}}\right)$
Per second	1	1.0000	0
Per minute	60	6.0000	1
Per hour	3,600	3.6000	3
Per day	86,400	8.6400	4

It is important to remember that the Totaliser reads the Channel Value. When configuring a channel, measured values that would normally be expressed in more than five digits (e.g. 0 to 3,000,000 Gallons per Day), must be ranged as a ratio of that number (e.g. 0 to 3,000 with a description of 'Gal./ Day X 1000'. The totaliser would also be counting in thousands of gallons. 3,000,000 Gallons would add 3,000 Counts to the Totaliser.

It is also possible to make the totaliser count faster than the rate from the source. To do this reduce the Factor Exponent value by the scaling multiple. To scale the counting up by 1000 , subtract $3\left(10^{3}\right)$ from the Factor Exponent.

Note...
If the source is ranged 0 to 3.0 and the totaliser is scaled up by 1000 , each 0.1 change in the source affects 100 counts; with a potentially large rounding error. Source ranging in this case should be 0 to 3.000 where each 0.001 would represent 1 count.

To make a totaliser count more slowly, the factor is increased. Directly totalising 30,000 gallons per minute (a factor of 6.0000 E 1) would add $43,200,000$ counts per day and overflow the totaliser counter in 23 days. If the Factor were scaled to count in thousands rather than units by changing the factor from 6.0000 E 1 (60) to 6.0000 E $4(60,000) ; 43,200$ Counts would be added per day - with each count representing 1000 gallons. The counter would then take over 60 years to reach 999,999,999.

FACTOR CONFIGURATION

Operation of the ENTER key calls the following display:

```
TT1 Fact Man
    X. XXXX Mant.
```

The mantissa part of the totaliser factor (calculated as described above) is entered using the up/down/side arrow keys, followed by an operation of the ENTER key, which calls the next display:

```
TT1 Fact Exp
    XX. Exp.
```

The exponent part of the totaliser factor is entered using the up/down/side arrow keys, followed by ENTER. Exponents from -30 to +30 may be used. Operation of the CLEAR key calls the next page (totaliser units).

TOTALISER UNITS

```
TT1 Units
UNITS
```

The up/down/side arrow keys are used to enter a five character unit-of-measure for the totaliser number. Operation of the ENTER key calls the next display page.

5.2 TOTALISER CONFIGURATION (Cont.)

PRESET

```
    TT1 Preset
XXXXXXXXX
```

This display is present only if 'Preset Up' or 'Preset Down' is the chosen type. A preset-up type counts up to this value, outputs its internal trigger and then stops until reset. A preset-down type counts down from this number until it reaches zero. It then outputs its internal trigger and stops until reset.

LOW CUTOFF

```
TT1 Low Cutoff
    _0.000 Units
```

Some Measured Values are not meaningful near the low end of their range and some become negative when their input is turned off. To avoid totalising these inaccurate signals, a low cutoff value (in measured value units) can be entered. Totalisation stops below this value. The up/down/side arrow keys are used to enter the low cutoff value.

HIGH CUTOFF

```
TT1 Hi Cutoff
```

 _^^^^^^. Units
 The high cutoff stops totalisation above the entered cutoff Value. The default setting is the over range value (^^^^^). The high cutoff is set using the up/down/side arrow keys .

TOTALISER RESET

```
TT1 Resettable
    No
```

This choice determines whether a totaliser can be reset. As long as this password-protected choice is NO, the totaliser cannot be reset. Action equation and operator menu choices have no effect. The up/down arrow keys are used to change this choice.

TOTALISER RESET ACTION EQUATION

```
TT1 Rset Eq ?
```

The ENTER key is used to review or change the action equation that controls the totaliser reset. This action equation defines which internal triggers are to be used to reset the totaliser. See Section 3.4 for a discussion of internal triggers and action equations.

A totaliser can be reset by its own trigger, making it possible for a preset totaliser to re-start automatically after it has reached its preset value. The same internal trigger that starts a log can reset a totaliser each week, day, shift, etc. The up/down/side arrow keys are used to enter internal triggers.

5.2 TOTALISER CONFIGURATION (Cont.)

OUTPUT COUNTER ENABLE

```
TT1 Cntr. Out
    On
```

The up/down arrow keys to turn the optional totaliser counter output ON or OFF.

OUTPUT SCALING

```
TT1 Out. Fact
```

The ENTER key is operated to gain access the output factor mantissa and exponent editing pages The output can be scaled by the output factor to count at a different rate from that at which the totaliser counts. The maximum rate for this trigger is 8 pulses per second, and each trigger pulse is "ON" for 50 milliseconds. Refer to the totalisation factor (above) for a description of this type of 'powers of 10 ' factor.

As with the normal totalisation factor previously described, the mantissa and exponent portions of the factor are entered on separate pages, by means of the up/down/side arrow keys.

DESCRIPTOR

```
TT1 Tot. Desc.
    DESCRIPTOR
```

The totaliser descriptor is a 16-character (max.) string which appears above the counter value in background totaliser displays and is also printed on the chart along with the totaliser count. The descriptor is entered using the up/down/side arrow keys.

5.3 CUSTOM MESSAGE OPTION

Custom Messages can be up to 16 alpha-numeric characters long and can be printed at any time by using the operator menu or an internal trigger as described in Section 3.4. The up/down arrow keys are used to select a message number from one to 10 .

5.3.1 MESSAGE ENTRY

The up/down/side arrow keys are used to define a 16-character message string. See section 4.4 for the library of message characters and numbers. When scrolling through the character listing, the speed of the scroll increases after the first six characters and again after the next six characters. Stopping the scroll causes a return to the initial, slow, speed.

5.3.2 COLOUR SELECT

The up/down arrow keys are used to select the colour (violet, red, black, green, blue or brown) in which the message is to be printed.

5.3.3 ACTION EQUATION

Operation of the ENTER key allows editing of the custom-message action equation. This action equation defines the internal triggers that cause each custom message to print. See Section 3.4 for a discussion of internal triggers and action equations.

5.3 CUSTOM MESSAGE (Cont.)

Figure 5.3 Custom message configuration menu arrangement

5.4 TRACE HISTORY

5.4.1 INTRODUCTION

This feature stores pre-event trace history for a channel and replays it when commanded to by an event (internal trigger, see section 3.4) or manual selection from the operator menu (see section 3.3). Because each playback gives the most recent pre-event history, repeated playback of the same history is not possible.

The channel input is sampled and stored at a rate determined by the history chart speed selected. Actual playback is done at the fastest practical chart speed. The playback chart span can be different from the span of the stored channel. A single 'magnification' factor can be applied to all selected channels as they are played back.

The time period of trace history that can be stored is related to the selected history chart speed. 75 mm of chart record is stored (1.5 hrs . of record at a history chart speed of $50 \mathrm{~mm} / \mathrm{hr}$). Faster chart speeds require more stored data values and decrease the time period of the trace history that can be stored.

In order to present the complete picture of conditions surrounding an event, an additional 75 mm of post-event data is stored starting at the event which triggered history.

The post-event data is then played back on the chart at maximum speed after the trace history. Replay ends when it catches up with 'real-time' or when the content of the chart buffer has been printed. Current data is followed by the printing of all history scales in Break-trace Mode (chart timing is interrupted).

5.4.2 CONFIGURATION PAGES

CHART SPEED

This selection determines the time period of the replayed record on the chart. The Up/-Down/Side Arrow keys are used to enter the History Chart Speed. To determine the time (in hours) covered by Trace History, the selected History Chart Speed is divided into $75 \mathrm{~mm}(3 \mathrm{in})$. (See examples in the table below.)

History chart speed $(\mathrm{mm} / \mathrm{hr})$	History time
20	3.75 hours
100	45 minutes
300	15 minutes
3000	1.5 minutes

MAGNIFICATION FACTOR

The playback of History can use the Configured Channel Range or it can be 'Magnified' to a different Range. Although it operates similarly, this is not the same Range Magnify function as that described in the next section (5.5). The Up/Down/Side Arrow keys are used to set the single Magnification Factor (between 05 and 20) for all History Traces selected for Magnification.

MAGNIFICATION CENTRE

A value can be set up in the channel configuration to act as a centre point for the magnification function. If such a value is not entered, the range history will be centered about the input value at the time 'history' is requested.

5.4 TRACE HISTORY (Cont.)

Figure 5.4 Trace history configuration menu arrangement

CHANNEL SELECTION

Press Enter to review or change the listing of the channels that will be magnified when history is replayed.Use the up/down/side arrow keys to enter the channels to be Magnified when History is replayed.

HISTORY ACTION EQUATION

Press Enter to review or change the action equation which is to initiate trace history.
This Action Equation defines the internal triggers that are to activate the trace history function. See section 3.4 for a discussion of internal triggers and action equations. Use up/down/side arrow keys to enter internal triggers for history action equations.

5.5 RANGE MAGNIFY

5.5.1 INTRODUCTION

When signalled by an internal trigger (section 3.4) or when manually selected from the operator menu (section 3.3), this feature changes the ranges of all selected channels. Range magnify is independent of the History Magnify feature described above, except in that the Mag. Centre' function (described below) applies to both.

The term 'magnification factor' is used for the number that determines how much and in which direction the range will be changed. A factor of greater than 1.0 expands the range, so that a smaller part of the range appears on the chart, but with more detail. A factor of less than 1 contracts the range giving less detail.

MAGNIFICATION CENTRE (MEASURING CHANNELS)

The 'Mag center' value is set up in the channel configuration pages for each relevant channel, and providing that it lies within the channel's range, this value acts as a centre point for the magnified range.

EXAMPLE

The normal input range for a channel is 0 to $1200{ }^{\circ} \mathrm{C}$; the magnification factor is set to 6 ; the magnification centre is set to $900{ }^{\circ} \mathrm{C}$. With the above settings, the magnified range (normal range divided by the magnification factor) is $1200 / 6=200^{\circ} \mathrm{C}$. The range $\left(\pm 100^{\circ} \mathrm{C}\right)$ is centred about the centre value, giving a new scale of $900 \pm 100^{\circ} \mathrm{C}$ i.e. 800 to $1000^{\circ} \mathrm{C}$.

If the centre value lies outside the normal range, it is ignored and the magnified range is centred about the process value existing at the time of Range Magnify initiation. In such a situation, on-chart printing is assured, but the resulting scale end values can be non-integer.

MAGNIFICATION CENTRE CONFIGURATION (MEASURING CHANNELS)

The Magnification display page appears after the 'Set Chart Range' display page in the channel configuration menu (section 4.8)

MAGNIFICATION CENTRE (DERIVED CHANNELS)

The operation of the Magnification Centre feature for derived channels is the same as that described above for measuring channels, with the following exception:

The high and low range inputs in the derived channel configuration are used to enable / disable the Magnification Centre function. The function is active when the high and low range are set above and below the centre value respectively. The feature is disabled if both low and high range values are set either above or below the centre value.

MAGNIFICATION CENTRE CONFIGURATION (DERIVED CHANNELS)

The 'Range High', 'Range Low' and 'Mag Center' display pages appear after the 'Enter Descriptor String' page in the derived configuration (section 5.5.3)

5.5 RANGE MAGNIFY (Cont.)

Figure 5.5 Range magnify menu arrangement

5.5.2 RANGE MAGNIFICATION CONFIGURATION PAGES

MAGNIFICATION FACTOR ENTRY

Factors between 0.05 and 20.00 can be entered using the Up/Down/Side Arrow keys. This is not the same factor used in the Trace History function, described above.

MAGNIFICATION CHANNEL ENTRY

Press Enter to review or change the channels selected for Range Magnification. All selected channels Magnify by the same factor. Use the Up/Down Arrow keys to select channels to Magnify

MAGNIFICATION ACTION EQUATION

The ENTER key is operated to review or change the action equation which will activate range magnify. This equation defines the internal triggers that are to activate the range magnify function. See section 3.4 for a discussion of internal triggers and action equations. The up/down/side arrow keys are used to enter the action equation internal triggers.

5.6 DERIVED VARIABLES

5.6.1 INTRODUCTION

The derived variable feature provides basic and specialised maths functions. These functions combine channel inputs, user-entered constants and pre-configured equations to derive variables which may be viewed, recorded and/or used in other calculations. There are two classes of DV: basic and specialised. Because of processing time allocations, only two specialised DVs can be used at any one time. The 'basic' functions are as follows:

Off	No Derived Variable (default state)
Add	A + B
Subtract	A - B
Divide	A B
Multiply	A X B
Lin. Slope	(A X B) + C
High Select	A $>$ B $=$ A
Low Select	A $>$ B $=$ B
High Peak	Highest value since reset
Low peak	Lowest value since reset
Average	Single point average
Polynomial	B $+C A+$ DA $^{2}+$ EA 3

The specialised functions are:
Log $10 \quad B \times \log 10 \mathrm{~A}$
Power $10 \quad B \times 10^{A}$
Flow, Sq.Rt Mass flow - Square Law
Flow, Linr. Mass flow - Linear
F value \quad Sterilization F value (Fo)
$\mathrm{RH} \quad$ Relative humidity
ZrO_{2} Sensor Zirconia oxygen probe (Nernst oxygen equation)

Note..
To clarify the presentation of this section, the above formulae use letters A, B, C, etc. for derived variable inputs. In the configuration menu, the Inputs are identified as 'Input 1', 'Input 2', 'Input 3' and so on, respectively.

Derived variables (DV's) take their inputs from channel inputs, other derived variables or constants and are updated once every second. Each DV channel includes three registers for individual DVs. With two (or three) DV channels, the six (or nine) DV registers are freely assignable to any DV channel.

DVs can be used like building blocks to construct formulae and equations as shown in the example below.

5.6 DERIVED VARIABLES (Cont.)

EXAMPLE

To calculate the average of the measured inputs of channel 1 to channel 6 and output it to channel 7 .

Note...
Derived Variables operate on the engineering units of an input channel. If a 4 to 20 mA input is measured as 1 to 5 Vdc and scaled $0-1000 \mathrm{kPa}$ the DV calculations use values of kPa .

5.6.2 MATHS FUNCTIONS

The following functions are scrollable in the DV configuration menu:
Off Used to turn a DV off, all DVs are initially in the off state.
Add Add input 1 to input 2
Subtract Subtract input 1 from input 2
Divide Divide Input 1 by input 2. Should input 2 be, or become 0, the output goes to 99999.
Multiply Multiply Input 1 by input 2
Lin. Slope $a x+b$ function where x is input 1 , ' a ' (slope) is input 2 and b, (offset), is input 3 .
High select High Select. The value is the higher of IN1 or IN2 values.
Low select Low Select. The value is the lower of IN1 or IN2 values.
High peak High Peak. The value is the highest value of IN1 measured since the function was last reset (by action equation). Function resets to current value.
Low peak Low Peak. The value is the lowest value of IN1 measured since the function was last reset (by action equation). Function resets to current value.
(Continued)

5.6.2 MATHS FUNCTIONS (Cont.)

Average Single-point cumulative average. The value of input 1 is sampled every 'input 2' seconds (minimum 5 seconds; maximum 32767 seconds). The sample is then added to the cumulative total and divided by the cumulative number of samples.

Since the number of samples is limited to 65536 (91 hours if at 5 seconds per sample), this average is most useful for a batch rather than as a continuous measurement. The function resets (by Action Equation (see 3.4) or after 65536 samples) to the current input value.

Note...
The input filter (channel menu, section 4.8) is, in effect, a running average with the number of samples held continuously equal to the number of filtering seconds.

PolynomialThird order polynomial curve fit: $\mathrm{A}+\mathrm{BX}+\mathrm{CX}^{2}+\mathrm{DX}^{3}$, where:

$$
\begin{aligned}
& \text { Input } 1=\text { variable }(X) \\
& \text { Input } 2=\text { constant } A \\
& \text { Input } 3=\text { constant } B \\
& \text { Input } 4=\text { constant } C \\
& \text { Input } 5=\text { constant } D
\end{aligned}
$$

$\log 10 \quad$ Log to the Base 10: Output is input $2 \times \log _{10}$ input 1 where, input 1 is the variable, and input 2 is a scaling factor.

Power 10 Power of 10: Output is input $2 \times 10^{\text {input } 1}$ where input 1 is the variable and input 2 is a scaling factor. Input 1 must lie between +30 and -30 , or else the output is 0000.0

Flow, Sq. Rt Square Root Mass Flow (AGA 3 Gas Flow):

$$
\text { Output }=\text { Input } 1 x \sqrt{\frac{\text { Input } 2 x \text { Input } 3}{\text { Input } 4 x \text { Input } 5}}
$$

where: \quad Input $1=\left(C^{\prime}\right)$ universal scaling constant.
Input $2=\left(\mathrm{h}_{w}\right)$ differential pressure in inches of water.
Input $3=(\mathrm{pf})$ static pressure in $\mathrm{PSI}(\mathrm{A})$.
Input $4=(\mathrm{Tf})$ flow temp in degrees Rankine (${ }^{\circ} \mathrm{F}+460$)
Input 5 = compressibility correction
Should Input 4 or Input 5 ever be 0.0 , the DV value will limit at 99999.

Flow, Linr. Linear Mass Flow (AGA 3 Gas Flow):

$$
\text { Output }=\text { Input } 1 x \frac{\text { Input } 2 x \text { Input } 3}{\text { Input } 4 \times \text { Input }}
$$

where: \quad Input $1=\left(C^{\prime}\right)$ universal scaling constant. Input 2 = (hw) differential pressure in inches of water. Input $3=(p f)$ static pressure in $\mathrm{PSI}(\mathrm{A})$. Input $4=$ (Tf) flow temp in degrees Rankine (${ }^{\circ} \mathrm{F}+460$) Input $5=$ compressibility correction

Should Input 4 or Input 5 ever be 0.0 , the DV value will limit at 99999.

5.6.2 MATHS FUNCTIONS (Cont.)

F value \quad F Value (Sterilization Constant)
where: $\quad \mathrm{Fo}_{\mathrm{t}}=$ Current Fvalue

$$
F o_{t}=F o_{t-1}+0.00839166 \times 10^{\frac{\text { mppull } 1 \text { hppur }}{\text { Ipputs }}}
$$

$\mathrm{Fo}_{\mathrm{t}-1}=$ Last time's F value
Input 1 = input temperature
Input 2 = sterilising temperature Input 3 = 'z' value.

The constant 0.00839166 is a minutes/sample factor, derived by dividing the sample time of 503.5 msec . by 60 Fo reset sets the $\mathrm{Fo}_{\mathrm{t}-1}$ term to zero.

Should Input 3 (z value) ever be zero, the output limits at 99999.

RH Relative Humidity.

The \% relative humidity equation requires the following inputs:

> Input $1=$ wet bulb temperature $\left(\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$
> Input $2=$ dry bulb temperature (in ${ }^{\circ} \mathrm{C}$)
> Input $3=$ atmospheric pressure (in BAR)
> Input $4=$ psychrometric constant $\left(6.660 \times 10^{-4}\right)$

ZRO2Sensor
 ZrO_{2} Sensor - Zirconia Oxygen Probe.

The output is the partial pressure of oxygen
where: \quad Input $1=$ partial pressure at electrode in \%

$$
\text { Output }=\frac{\text { Input } 1}{10^{B}}
$$

$$
B=\frac{\text { Input } 2}{0.0496 \times \text { Input } 3}
$$

Input 2 = probe emf in mV
Input $3=$ Probe temperature in degrees Rankine (Fahrenheit +460)

5.6.2 MATHS FUNCTIONS (Cont.)

DERIVED VARIABLE EXAMPLE

Two transmitters measuring the same flow for High/Low split range giving increased resolution and accuracy for low flow: flow transmitter No. 1 functions from 0 to 100 Litres per sec (l/s); flow transmitter No. 2 functions from 100 to $1000 \mathrm{l} / \mathrm{s}$

DV1 Low Select - Input from Transmitter No. 1 cannot go above 100 when flow is greater than 100 litres/sec
DV2 High Select - Input from Transmitter No. 2 cannot go below 0.0 when flow is less than $100 \mathrm{l} / \mathrm{s}$ (making Scaled flow less than 0).
DV3 Add - Adds the two scaled inputs. At full flow $900+100=1000$.
Ch4 Chart Range $=0$ to 1000 litres per second. Source $=$ DV3.

5.6.2 MATHS FUNCTIONS (Cont.)

WORKSHEET FOR TWO TRANSMITTER EXAMPLE

DV	Type	Input					Out to	Reset by
		1	2	3	4	5		
1	LSL	Ch1					DV3	
	Low select prevents channel 1 signal from going above 100 (constant value)							
2	HSL	Ch2					DV3	
	High select prevents channel 2 signal from going below 0 (constant value)							
3	ADD	DV1	DV2				Chan 4	
	Adds low and high range inputs to give total flow							

5.6.3 DERIVED CHANNEL CONFIGURATION

The configuring of a derived channel is similar to that of a normal measuring channel, but there are fewer steps. The figure below shows the steps and section 4.8 should be referred to as necessary for more information about the various parameters.

As can be seen, the channel source is defined as a derived variable. The definition of these variables is given in the next section.

One further requirement is to define the trace colour.

MAGNIFICATION CENTRE

The operation of the Magnification Centre feature for derived channels is the same as that described in section 4.8, for measuring channels, with the exception that the High and Low range inputs in the derived channel configuration can be used to enable / disable the Magnification Centre function.

Magnification centre is enabled when the 'Mag. Center' value lies between the high and low range values. To disable the function, both range values are set either above or below the centre value.

5.6.3 DERIVED CHANNEL CONFIGURATION (Cont.)

Figure 5.6.3 Derived channel configuration menu arrangement

5.6.4 DERIVED VARIABLE CONFIGURATION

DV NUMBER

```
Derived Var. ?
    N
```

The up/down arrow keys are used to select a DV for configuration. Each optional derived channel brings with it the ability to define three DV's.

DV FUNCTION

```
DV Function
    Add
```

The Up/Down arrow keys are used to select a derived variable function

DV SOURCE SELECT

```
DV1 Input 1
    Constant
```

The Up/Down arrow keys are used to select: Input Channel, DV 1 to 9 or constant.

CONSTANT ENTRY

These displays appear only if 'Constant' has been selected as one of the DV's inputs.

```
DV1 Const.?
```

N
The up/down arrow keys are used to scroll through inputs that have been chosen as constants, above. Operation of the ENTER key calls the mantissa and exponent pages for the constant.

Constants are entered on two pages; the mantissa page and the exponent (power of 10) page. The constant is entered as a number between 0 and 9.9999 on the mantissa page, followed on the exponent page by the relevant power of 10 , (in the range -30 to +30). Thus, a constant of 6.25 would have an entry in the mantissa page of 6.2500 , and an exponent of 0 . A constant of 625 would have a mantissa of 6.2500 , but with an exponent value of 2 , and a constant of $6,250,625$ would have a mantissa of 6.2506 , with an exponent value of 6 .

```
DV1 Input 1
    _1.0000 Mant.
```

CLEAR returns to the 'DV1 Const.?' display above. ENTER, followed by page scroll calls the exponent page.

```
DV1 Input 1
    _2 Exp.
```

The up/down/side arrows are used to enter the mantissa and exponent values.CLEAR returns to the 'DV1 Const.?' display above. ENTER, followed by page scroll re-calls the mantissa page.

5.6.4 DERIVED VARIABLE CONFIGURATION (Cont.)

Figure 5.6.4 Derived variable configuration arrangement

5.6 DERIVED VARIABLES (Cont.)

DERIVED VARIABLE RESET

```
DV1 Rset Eq
```

The reset equations page appears only if a resettable DV has been configured. The ENTER key is used to view and allow editing of the action equation

The action equation defines the internal triggers that are to be used to trigger the reset of cumulative variables.

DERIVED VARIABLE DESCRIPTOR

```
DV1 Descript.
```

????????????????

The derived variable descriptor is a character string, of up to 16 characters, which appears above the current value in a single channel display, and which is printed on the chart when the dv range is printed, or the channel logged. The descriptor string is entered using the up/down/side arrow keys as described in section 4.4.

DERIVED VARIABLE UNITS

```
DV1 Units
    ?????
```

The derived variable units entry is a character string, of up to 5 characters. The string appears whenever the associated dv appears. The descriptor string is entered using the up/down/side arrow keys as described in section 4.4.

DERIVED VARIABLE DECIMAL POINT

The currently selected decimal position is shown. The up/down arrow keys move the decimal point that appears in the displayed value. These positions are selectable:
X.XXXX, XX.XXX, XXX.XX, XXXX.X, XXXXX.

If a value is to be displayed, the use of number positions to the right of the Decimal Point should be considered carefully. The use of multiple decimal positions can imply a reading accuracy beyond the sensor and/or recorder capability.

Also, the least significant (right end) digits will be the fastest changing digits. Multiple decimal positions may change so quickly that the display will be difficult to read.

5.7 COMMUNICATIONS OPTION

5.7.1 INTRODUCTION

The communications option allows a host computer to obtain (read) or change (write) most of the values and operational states within the recorder. The exceptions are: a) that it is not possible to access the communications parameters (eg. Baud rate), and b) the host is not able to calibrate the recorder.

5.7.2 INSTALLATION

The communications option consists of a communications circuit board (which may include event inputs, if required), terminal connectors and operating software. If the communications option is being retro-fitted, an upgrade to the recorder software may also be necessary: please contact the local agent for details. The locations of the communications connectors are shown in figure 5.7 .2 b below. If the communications board is fitted with event input circuitry, then the connectors are also as shown below, otherwise, a blanking piece is fitted.

WIRING

The Tx- and Tx+ terminals of the recorder are connected to $T x$ - and $T x+$ of all the other recorders in the communications link, and to the $R x-$ and $R x+$ connections, respectively, of the host computer. The $R x-a n d R x+$ terminals of the recorder are connected to $R x$ - and $R x+$ of all other recorders in the communications link, and to the Tx- and Tx+ connections, respectively, of the host. Figure 5.7.2a shows a simple wiring diagram with two recorders. The following sections on biassing and terminating resistors give further details.

For computers with RS232 connections, an RS232 to RS422 conversion module is available from the manufacturer, stocked under the part number LA245282.

Figure 5.7.2a Link wiring

5.7.2 INSTALLATION (Cont.)

TERMINATING RESISTOR

At the recorder furthest from the host computer, it is recommended that a 220Ω resistor be fitted across the recorder $R x+$ and $R x$ - terminals to reduce unwanted signal reflections. The resistor can be of almost any type, but $1 / 4$ Watt is recommended for mechanical strength coupled with manageable size.

BIASSING RESISTORS

At one of the recorders in the link, the recorder Tx- terminal must be 'pulled down' to signal ground and the Tx+ terminal must be 'pulled up' to 5 Volts, using 470Ω resistors. As the Terminating Resistor has to be fitted at the end of the link, it is recommended that the biassing resistors are also fitted there as shown in figure 5.7.2 above. For resistor type, see under 'Terminating Resistor' above.

The communications terminals are shown here in option board 3 position (Slot 5). The board can alternatively be fitted in option board position 1 (slot 3) or 2 (slot 4) provided the position is free. See section 2.4.5 for further details.

Figure 5.7.2b Communications link connector locations

CAUTION

DAMAGE WILL BE CAUSED TO THE TERMINAL BLOCKS IF THE SCREWS ARE OVER-TIGHTENED. THE RECOMMENDED MAXIMUM TORQUE IS 0.4 Nm.

5.7.3 CONFIGURATION

The communications configuration pages are accessed from the 'Comms' item in the main menu.

BAUD RATE

The up/down arrow keys are used to scroll through 300, 600, 1200, 2400, 4800, 9600, any of which may be chosen as Baud rate.

PARITY

The up / down arrow keys are used to scroll through 'even', 'odd' and 'none', as the available parity settings. When using seven data bits, 'odd' or 'even' setting may be used. With 8 bits, only 'none' may be used successfully.

FLOW CONTROL

The up / down arrow keys are used to scroll between 'none' and 'XON/XOFF'

DISABLE SCHEME

The up / down arrow keys are used to scroll between 'Read/Write' and Read only'.

GROUP ID (G)

The up / down arrow keys are used to scroll through 0 to 15 .

UNIT ID (U)
The up / down arrow keys are used to scroll through 0 to 15 .

Once all the Communications parameters have been set up, operation of the $<\mathrm{C}>$ key causes a return to the main menu

5.7.3 COMMUNICATIONS CONFIGURATION (Cont.)

Figure 5.7.3 Communications configuration menu arrangement

5.7.4 PROTOCOL

Protocol defines the control codes, data format, sequencing etc. that is required for the successful implementation of a serial communications link. The El bi-synch protocol used by the 340 series of recorders is derived from ANSII standard X3.28-2.5-A4. This is a character-oriented protocol which supports multi-drop linkage to allow a host (computer or 'dumb terminal') to communicate with a number of recorders.

Certain control characters are used as shown in the table below. The use of these control codes is described as and when they arise in the following polling and selection sequence description.

ASCII	Hex	Binary	Control key
STX	02	00000010	CTRL B
ETX	03	00000011	CTRL C
EOT	04	00000100	CTRL D
ENQ	05	00000101	CTRL E
ACK	06	00000110	CTRL F
NAK	07	00000111	CTRL U

Table 5.7.4a Control character codes

TERMINOLOGY

POLL
This refers to the sequence in which a particular recorder is interrogated and responds with data. Recorder configuration and data values are not altered.

SELECT

This refers to the sequence in which the data values or configuration of a particular recorder are changed by instructions from the host.

POLL SEQUENCE

Note...
The spaces between 'characters' in the poll sequence message below are inserted for clarity. These spaces must not be inserted into the data sent to the recorder, or the message will not be understood.

The sequence of characters used to poll a parameter is EOT G G U U CN C1 C2 ENQ where the various parts of the sequence have the following meanings:

EOT End of text. This character resets the data lines and causes all the recorders to examine the next four characters to see if they match the address set up in the configuration pages.

G Group address. This should match the Group ID of the relevant recorder, as set up in that recorder's communication configuration pages, but see the Unit Address note below.

U Unit address. This should match the Unit ID of the relevant recorder, as set up in that recorder's communication configuration pages.

Note...

As can be seen, G and U are each only a single character, and a numeric value cannot therefore be entered for addresses 10 to 15. The characters shown in table 5.7.4b below, are used instead:

CN Channel number. This character is used to address a channel, derived variable, alarm etc. within the relevant recorder. A full list of CN values is given later in this document.

C1 C2 Command mnemonic. These two characters form a command code which tells the recorder which parameter the host wishes to access. For example, to read the measured (present) value, C1 and C2 would be P and V respectively. A full list of parameters appears later in this document.

5.7.4 PROTOCOL (Cont.)

POLLING SEQUENCE (CONT.)

ENQ Enquiry. The polling message is terminated by the ENQ control character.

Address	Character
10	\vdots
11	$;$
12	$<$
13	$=$
14	$>$
15	$?$

Table 5.7.4b Group and Unit IDs 10 to 15

POLL RESPONSE

In response to the poll message, the recorder will respond with either a poll completed message or a poll incomplete message. If however, the address sent is not recognised, the recorder will not respond at all.

POLL COMPLETED

A successful poll will result in the recorder returning the required data held within a message of the following type: STX CN C1 C2 D1 to DN ETX BCC where CN, C1 and C2 are as described above, and the other mnemonics are as follows:-

STX Start of Text. This immediately precedes the text to be sent to the host
D 1 to DN Data bytes. The N data bytes containing the parameter value requested. The number of characters sent depends on the format of the particular parameter. These formats are detailed later in this document.

ETX End of Text. This character terminates the data transmission and alerts the host to the fact that the next character to arrive will be the block check control (BCC) byte.

BCC Block Check Control. This is a form of data checking, to ensure that no errors have occurred in the transmission of the message. BCC is calculated by exclusive ORing the hex values of CN with C 1 , then the result of this with C2, the result of this with D1, and so on up to and including ETX. The final XORing produces BCC. For details see the example below.

POLL INCOMPLETE

If the recorder recognises the group and unit addresses, but some other part of the message cannot be deciphered, it will respond with a message of the type: STX CN C1 C2 EOT. The host must then initiate a complete new polling sequence before it can receive any more parameter data.

5.7.4 PROTOCOL (Cont.)

To calculate the BCC of the message STX2PV12.34ETX (present value of channel 2 is 12.34). In ASCII hex, this is 32 xor 50 xor 56 xor 31 xor 32 xor $2 E$ xor 33 xor 34 xor 03 to give a BCC of 1D as follows.

Character	ASCII	Binary		
2	32	0011	0010	
P	XOR 50	0101	0000	
	=	0110	0010	
V	XOR 56	0101	0110	
	=	0011	0100	
1	XOR 31	0011	0001	
	=	0000	0101	
2	XOR 32	0011	0010	
	=	0011	0111	
.	XOR 2E	0010	1110	
	$=$	0001	1001	
3	XOR 33	0011	0011	
	=	0010	1010	
4	XOR 34	0011	0100	
	=	0001	1110	
ETX	XOR 03	0000	0011	
	$=\mathrm{BCC}$	0001	$1101=$	1 D

The exclusive OR (XOR) function

Each bit in the two Hex bytes making up the ASCII character is compared with the equivalent bit in the ASCII character it is being XORed with. I.E. the two bits 0 are compared, the two bits 1 are compared and so on.

If both bits are 0 , the result is also 0
If both bits are 1 , the result is 0
If one bit is 1 and the other is 0 , the result is a 1 .

SELECTION SEQUENCE

The message sent to the recorder to write a new value is:EOT G G U U STX CN C1 C2 D1 to DN ETX BCC where each of the characters/mnemonics is as described in the polling section above.

SELECTION COMPLETE.

If all is well, the recorder will respond with a single ACK to indicate that the message has been accepted as correct, and that the change has taken place. The host may now re-enter the selection procedure at STX to access a further parameter in the same channel, or it may initiate a complete new selection sequence.

SELECTION INCOMPLETE

If the group and unit addresses are recognised, but some other part of the message is not valid (e.g. the parameter is read only) the recorder will respond with a NAK. The host must now initiate a complete new selection sequence.

If the group or unit address is not recognised, the recorder will make no response.

5.7.5 PARAMETER ACCESS

The parameter address consists of a Group ID (G), a Unit ID (U), a channel address (CN) and the parameter mnemonic C1 C2. The Group and Unit IDs have already been described in the polling section above.

The channel address CN covers not only measuring and derived channels, but also alarms totalisers etc. as in the table below.

CN	Definition	CN	Definition
0	Relay 1	Y	Not used
1	Measuring channel 1 or relay 2	Z	Not used
2	Measuring channel 2 or relay 3	a	Not used
3	Measuring channel 3 or relay 4	b	Not used
4	Derived channel 1 or relay 5	c	Not used
5	Derived channel 2 or relay 6	c	Not used
6	Derived channel 3 or relay 7	d	Not used
7	Relay 8	e	Not used
8	Relay 9	f	Not used
9	Relay 10 dind 11	g	Not used
A	Measuring channel 1 Alarm 1 (A11)/Relay 11	h	Not used
B	Measuring channel 1 Alarm 2 (A12)/Relay 12	i	Not used
C	Measuring channel 1 Alarm 3 (A13)/Relay 13	'	Not used
D	Measuring channel 1 Alarm 4 (A14)/Relay 14	j	Not used
E	Measuring channel 2 Alarm 1 (A21)/Relay 15	k	DV1 calculations
F	Measuring channel 2 Alarm 2 (A22)/Relay 16	I	DV2 calculations
G	Measuring channel 2 Alarm 3 (A23)	m	DV3 calculations
H	Measuring channel 2 Alarm 4 (A24)	n	DV4 calculations
1	Measuring channel 3 Alarm 1 (A31)	0	DV5 calculations
J	Measuring channel 3 Alarm 2 (A32) Measuring channel 3 Alarm 3 (A33)	p	DV6 calculations
L	Measuring channel 3 Alarm 4 (A34)	q	DV7 calculations
M	Derived channel 1 Alarm 1 (A41)	r	DV8 calculations
N	Derived channel 1 Alarm 2 (A42)	s	DV9 calculations
O	Derived channel 1 Alarm 3 (A43)	t	Totaliser 1
P	Derived channel 1 Alarm 4 (A44)	u	Totaliser 2
Q	Derived channel 2 Alarm 1 (A51) Derived channel 2 Alarm 2 (A52)	v	Totaliser 3
S	Derived channel 2 Alarm 3 (A53)	w	Totaliser 4
T	Derived channel 2 Alarm 4 (A54)	x	Totaliser 5 or timer 1
U	Derived channel 3 Alarm 1 (A61)	y	Totaliser 6 or timer 2
V	Derived channel 3 Alarm 2 (A62)	z	Timer 3
W	Derived channel 3 Alarm 3 (A63)	\%	Timer 4
X	Derived channel 3 Alarm 4 (A64)	\{	Timer 4

Table 5.7.5a CN definition
The mnemonic $\mathrm{C} 1, \mathrm{C} 2$ defines the actual parameter to be accessed within the channel, alarm, totaliser etc. selected by CN. The following table lists each parameter along with its mnemonic, together with cross references to a further table which give details of the parameter itself.

PARAMETER TABLES.

The tables later in this section give details of how the recorder configuration parameters can be accessed using a serial link. For full details of the functions described by the parameters, the relevant sections of the manual should be referred to. The parameter tables refer to a note which is given opposite. The tables also refer to a data format. A full discussion of formats is given in Section 5.7.6

5.7.5 PARAMETER ACCESS (Cont.)

NOTE..
Action Equations
Action equations are set up using Format 3, as described in section 5.7.6. Format 3 consists of 16 characters, each of which can contain the hex value 0 to F, where each of the hex bits set refers to a particular trigger. In order to clear an action equation, the value 0000000000000000 is sent, to clear all bits. (The gaps between the above groups of four bits are inserted only for clarity. They must not be included in the data string.)

5.7.5 PARAMETER ACCESS (Cont.)

Parameter	Mnemonic	Table	Parameter	Mnemonic	Table
Alarm deadband	AB	5.7.5e	DV Calcs. reset action equation	VA	5.7 .5 g
Alarm hysteresis	AH	5.7.5e	DV calculation units	vU	5.7 .5 g
Alarm message	DE	5.7.5e	History chart speed	V3	5.7.5c
Alarm message print control	AE	5.7.5e	Instrument error code	EE	5.7.5c
Alarm setpoint	SP	5.7.5e	Instrument ID number	ID	5.7.5c
Alarm rate-of-change time base	TB	5.7.5e	Instrument identifier	II	5.7.5c
Alarm type	AT	5.7.5e	Log start action equation	LQ	5.7.5d
Alternative chart speed	V2	5.7.5c	Logged channels	LG	5.7.5d
Alt. chrt. spd. action equation	SQ	5.7.5c	Logged totalisers	TC	5.7.5f
Batch number	BN	5.7.5c	Miscellaneous operator bits	BE	5.7.5h
Block length	BL	5.7.5c	Misc. instrument menu bits	BF	5.7.5c
Channel adjust	BV	5.7.5d	Misc.channel menu bits	CF	5.7.5d
Channel alarm status	AS	5.7.5e	primary chart speed	V1	5.7.5c
Channel decimal point position	DP	5.7.5d	Print mode	PM	5.7.5c
Channel descriptor	$C D$	5.7.5d	Range magnification factor	ZF	5.7.5h
Channel engineering units	EU	5.7.5d	Range mag. action equation	ZQ	5.7.5h
Channel filter setting	SF	5.7.5d	Range magnify channels	ZC	5.7.5h
Channel input high	IH	5.7.5d	Relay action equation	RQ	5.7.5e
Channel input low	IL	5.7.5d	Relay source (totaliser number)	RS	5.7.5f
Channel input type	IU	5.7.5d	Relay status	DS	5.7.5e
Channel linearisation	FN	5.7.5d	Relay type	\$0-\$F	5.7.5e
Channel process value	PV	5.7.5d	set time and date	ST	5.7.5c
Channel printing colour	PC	5.7.5d	Softkey descriptor	SS	5.7.5c
Channel range high	FH	5.7.5d	Softkey enable	SK	5.7.5c
Channel range low	FL	5.7.5d	Time remaining	Tc	5.7.5c
Channel units select	SU	5.7.5d	Timer clock setting	Ts	5.7.5c
Chart range high	OH	5.7.5c	Timer duration	Td	5.7.5c
Chart range low	OL	5.7.5c	Timer reset action equation	Tl	5.7.5c
Chart hold action equation	Q	5.7.5c	Timer type	Te	5.7.5c
Cold junction temperature	G	5.7.5c	Totaliser counter output	OC	5.7.5f
Cold junction type	JT	5.7.5d	Totaliser counter output factor	то	5.7.5f
Custom curve CJC ${ }^{\circ} \mathrm{C}$ points	1J-3J	5.7.5h	Totaliser descriptor	TT	5.7.5f
Custom curve CJC mV points	1M-3M	5.7.5h	Totaliser factor	TF	5.7.5f
Custom curve decimal position	OP	5.7.5h	Totaliser high cut-off	TH	5.7.5f
Custom curve signal	$\mathrm{x} 0-\mathrm{xA}$	5.7.5h	Totaliser low cut-off	TL	5.7.5f
Cstm curve signal decimal posn.	IP	5.7.5h	Totaliser manual reset	TR	5.7.5f
Custom curve units	y0-yA	5.7.5h	Totaliser preset value	VP	5.7.5f
Custom message action eqn.	01-91	5.7.5h	Totaliser reset action equation	TL	5.7.5f
Custom message colour	c0-c9	5.7.5h	Totaliser reset equation	TE	5.7.5f
Cstm message manual trigger	DM	5.7.5h	Totaliser source	So	5.7.5f
Custom message text	s0	5.7.5h	Totaliser type	TY	5.7.5f
DV calculation current value	DV	5.7 .5 g	Totaliser units	UT	5.7.5f
DV calculation comms reset	VM	5.7 .5 g	totaliser value	TV	5.7.5f
DV calculation constants	K1-K5	5.7 .5 g	Trace history action equation	HQ	5.7.5d
DV calculation decimal posn.	WD	5.7 .5 g	Trace history mag. channels	HC	5.7.5d
DV calculation descriptor	VS	5.7 .5 g	Trace history mag. factor	HM	5.7.5d
DV calculation function DV calculation inputs	$\begin{gathered} \text { FD } \\ 1 I-5 I \end{gathered}$	$\begin{aligned} & 5.7 .5 \mathrm{~g} \\ & 5.7 .5 \mathrm{a} \end{aligned}$	Version number	V0	5.7.5c

Figure 5.7.5b Parameter list

5.7.5 PARAMETER ACCESS (Cont.)

Mnemonic	For- mat	CN *	Bits	Instrument parameter description	Access wrt. host
BF	FF	Any	$\begin{gathered} 0 \\ 1 \\ 2 \\ 3 \text { to } 15 \end{gathered}$	Miscellaneous instrument menu bits Time format: $0=12$ hour; $1=24$ hour Chart speed units: $0=\mathrm{mm} /$ hour; $1=$ inches/hour Operator alarm setpoint access: $0=$ off; $1=$ on Not used	$\begin{aligned} & R / W \\ & R / W \\ & R / W \end{aligned}$
BL	FE	Any	N/A	Block length. El protocol definition. Always returns >8080	Read only
BN	A	Any	N/A	Six character batch number for ID line on chart	R/W
CJ	6	Any	N/A	Cold junction temperature Determines the external CJC temperature in ${ }^{\circ} \mathrm{C}$	R/W
CQ	$\stackrel{3}{\text { FE }}$	Any	N / A	Chart hold action equation (See note page 5-35)	R/W
EE	FE	Any	N / A	```Instrument error code Digits 1& 2 00= No error since last initialisation 01= Invalid mnemonic 02 = Bad checksum 03 = Comms offline 04 = Read attempt on write only 05 = Write attempt on read only 06 = Invalid CN 07 = Invalid data format (too many digits, missing sign etc.) 08 = Not enough characters 09 = Not used Digit 3 0 = No error since last initialisation 4 = One or more errors since last initialisation Digit 4 0= No error since last initialisation 1 = Communications error 7 = Invalid message 8 = Bad message content```	Read only
ID	5	Any	N/A	Instrument ID as entered in the instrument menu	R/W
II	FE	Any	N/A	Instrument type. Always returns >0346	Read only
PM	6	Any	N/A	$\begin{aligned} & \text { Print mode } \\ & 00=\text { No print } \\ & 01=\text { Overprint } \\ & 02=\text { Break trace } \end{aligned}$	R/W
SK	5	Any	N/A	Softkey operator access enable $00=$ Softkey does not appear in menu (access disabled) 01 = Softkey appears in menu (access enabled)	R/W
SQ	3	Any	N/A	Alternative chart spd. action equation (See note page 5-35)	R/W
SS	B	Any	N/A	Softkey descriptor (up to 16 characters)	R/W
ST	D	Any	N/A	Time and date setting for the instrument	R/W
Tl	3	x to \{	N/A	Timer reset action equation (See note page 5-35) CHANGING THIS PARAMETER RESETS THE TIMER	R/W
Tc	2	x to \{	N/A	Timer current value. Gives time remaining for periodic timer	Read only
Td	7	x to \{	N/A	Time period for periodic timer	R/W
Te	0	x to \{	N/A	Timer type. $>0000=$ off; $>0001=$ Periodic; $>0002=$ Clock CHANGING THIS PARAMETER RESETS THE TIMER	R/W
Ts	D	x to \{	N/A	Time and date for clock timer. The following values result in blank (don't care) settings Minutes $=60$; Hours $=24$; Days $=32$, Months $=13$, Year $=00$	R/W
V0	0	Any	N/A	Communications software version. Version $1.0=>0100$	Read only
V1	6	Any	N/A	Primary chart speed. Integer values followed by decimal point only.	R/W
V2 V3	6	Any	N/A N/A	Alternative chart speed as for V1 above. History record chart speed. The apparent chart speed (amount of	R/W R/W
$\checkmark 3$	6	Any	N/A	history time) that will be presented in the 50 mm of chart playback. expressed as a chart speed. See V1 above.	R/W

* 'Any' in the CN column, means that any valid CN may be used - see table 5.7.5a

Table 5.7.5c Instrument parameter definitions

5.7.5 PARAMETER ACCESS (Cont.)

Mnemonic	Format	CN *	Bits	Alarm parameter description	Access wrt. host
AB	6	A to X	N/A	Alarm deadband. Defines the value of the deadband setting. The	R/W
AE	0	A to X	N/A	value is active if 'Deadband' is selected as alarm type (see At below). Alarm message print control. Enables or disables printing of alarm status and alarm-on messages. $00=$ Printing disabled $01=$ Printing enabled	R/W
A ${ }^{\text {H }}$	6	A to X	N/A	Alarm hysteresis. Defines the hysteresis value for the selected alarm	R/W
AS	2	1 to 6	N/A	Alarm status for the selected channel Sent as >1122334455, where 11 to 44 give the status of alarms 1 to 4 respectively as shown below. 55 is not used. $00=$ No active alarms 01 = Active Abs. high 02 = Active Abs. low 03 = Active deadband alarm 04 = Active Rate-of-Change (rising) $05=$ Active Rate-of-Change (falling)	Read only
AT	5	A to X	N/A	Alarm type. Defines alarm type. See also $A B$ and $S P$ $\begin{array}{ll} 00=\text { Off } & 03=\text { Deadband (deviation) alarm } \\ 01=\text { Absolute high } & 04=\text { Rate-of-Change (rising) } \\ 02=\text { Absolute low } & 05=\text { Rate-of-Change (falling) } \end{array}$	R/W
DE	B	N/A	N/A	Alarm message. Allows a 16-character message to be printed on alarm	R/W
DS	5	Any		Relay status. Energisation status for relays. (De-energised in alarm) $0=$ energised $\quad 1=$ de-energised (default)	
			0	Relay 1	Read only
			1	Relay 2	Read only
			2	Relay 3	Read only
			3	Relay 4	Read only
			4	Relay 5	Read only
			5	Relay 6	Read only
			6	Relay 7	Read only
			7	Relay 8	Read only
			8	Relay 9	Read only
			9	Relay 10	Read only
			10	Relay 11	Read only
			11	Relay 12	Read only
			12	Relay 13	Read only
			13	Relay 14	Read only
			14	Relay 15	Read only
			15	Relay 16 (16	Read only
RQ	3	$\begin{gathered} (0 \text { to } 9 \& \\ \text { A to } F) \end{gathered}$	N/A	Relay action equation. Specifies relay trigger (See note page 5-35). Channel entry: 0 to 9 and A to F (relays 1 to 16 respectively)	R/W
SP	6	A to X	N/A	Alarm Setpoint. Allows alarm setpoint to be accessed. See also AB	
TB	5	A to X	N/A	$\begin{aligned} & \text { Rate-of-change time base. } \\ & \hline 0=\text { per hour } \\ & 1=\text { per minute } \\ & 2=\text { per second } \end{aligned}$	R/W
$\begin{gathered} \$ 0 \\ \text { to } \$ \mathrm{FF} \end{gathered}$	5	Any	N/A	Relay Source. Selects the trigger source for relays. $00=\mathrm{Off}$ $01=$ Action equation $02=$ Totaliser counter output	R/W
				Note... 1 er	
				\$0 relay $1 \quad \$ 8=$ relay 9	
				\$1 = relay $2 \quad \$ 9=$ relay 10	
				\$2 relay $3 \quad \$ \mathrm{~A}=$ relay 11	
				$\$ 3$ relay $4 \quad \$ B=$ relay 12	
				\$4 = relay $5 \quad \$ \mathrm{C}=$ relay 13	
				\$5 relay $6 \quad \$ \mathrm{D}=$ relay 14	
				\$6 relay $7 \quad \$ \mathrm{E}=$ relay 15	
				\$7 = relay $8 \quad \$ \mathrm{~F}=$ relay 16	

* 'Any' in the CN column, means that any valid CN may be used - see table 5.7.5a

Table 5.7.5d Channel parameter definitions

5.7.5 PARAMETER ACCESS (Cont.)

* 'Any' in the CN column, means that any valid CN may be used - see table 5.7.5a

Table 5.7.5e Alarm parameter definitions

5.7.5 PARAMETER ACCESS (Cont.)

Mnemonic	Format	CN *	Bits	Derived variable parameter description	Access wrt. host
1 I to	5	k to s	N/A	Derived variable input. Specifies source of input to derived variable calculations $\begin{array}{ll} 00=\text { Channel } 1 & 08=\text { DV3 } \\ 01=\text { Channel } 2 & 09=\text { DV4 } \\ 02=\text { Channel } 3 & 10=\text { DV5 } \\ 03=\text { Channel } 4 & 11=\text { DV6 } \\ 04=\text { Channel } 5 & 12=\text { DV7 } \\ 05=\text { Channel } 6 & 13=\text { DV8 } \\ 06=\text { DV1 } & 14=\text { DV9 } \\ 07=\text { DV2 } & 15=\text { Constant } \end{array}$	R/W
$\begin{aligned} & \text { DV } \\ & \text { FD } \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \text { to } 9 \\ & k \text { to } s \end{aligned}$	N/A N/A	Derived variable calculation value.	Read only R/W
				$00=$ Off $10=$ Average $01=$ Add $11=$ Polynomial $02=$ Subtract $12=$ Log base 10 $03=$ Divide $13=$ Power of 10 $04=$ Multiply $14=$ Mass flow (square root) $05=$ Linear slope $15=$ Mass flow (linear) $06=$ High select $16=$ Sterilization constant $07=$ Low select $17=$ Relative humidity $08=$ High peak $18=$ Zirconia probe $09=$ Low peak	
$\begin{gathered} \mathrm{K} 1 \\ \mathrm{t} \circ \mathrm{O} 5 \end{gathered}$	8	k to s	N/A	DV Calculation constant. Defines the mantissa and exponent for each constant. See format 8 definition in table 5.8.6a for details.	R/W
VA VD	3 5	k to s k to s	N/A N/A	DV calculations reset action equation. Specifies triggers to reset a DV calculation. See format 3 definition in table 5.8.6a for details. Changing this parameter resets the DV calculation.	R/W R/W
VD	5	k to s	N/A	$\begin{array}{ll} 00=\text { DDDDD. } & 03=\text { DD.DDD } \\ 01=\text { DDDD.D } & 04=\text { D.DDDD } \\ 02=\text { DDD.DD } & \end{array}$	R/W
VM	0	k to s	N/A	Derived variable calculation communications reset. Any value written with this parameter will cause a reset of the selected DV calculation. When read, this parameter always returns >0001.	R/W
$\begin{aligned} & \text { VS } \\ & \text { VU } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{k} \text { to } \mathrm{s} \\ & \mathrm{k} \text { to } \mathrm{s} \end{aligned}$	$\begin{aligned} & N / A \\ & N / A \end{aligned}$	Derived Variable calculation descriptor. 16-character descriptor. Derived variable calculations engineering units. Five character string.	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$

Table 5.7.5g Derived variable calculation parameter definitions

5.7.5 PARAMETER ACCESS (Cont.)

Mnemonic	Format	CN *	Bits	Miscellaneous parameter description	Access wrt. host
1 J to 3 J	6	Any	N/A	Custom curve CJC points. The temperature (${ }^{\circ} \mathrm{C}$) for each pair of the three point-pair custom curve cold junction compensation.	R/W
1 M to 3M	6	Any	N/A	Custom curve CJC points. The $m V$ values for each pair of the three point-pair custom curve cold junction compensation.	R/W
IP	5	Any	N/A	$\begin{array}{ll} \text { Custom curve input signal (electrical units) decimal point position. } \\ \hline 00=\text { DDDDD. } & 03=\text { DD.DDD } \\ 01=\text { DDDD.D } & 04=\text { D.DDDD } \\ 02=\text { DDD.DD } & \end{array}$	R/W
OP	5	Any	N/A		R/W
$x 0$ to xA	6	Any	N/A	Custom curve signal. Defines electrical inputs for each of the 11 pointpairs in the custom curve.	R/W
y0 to yA	6	Any	N/A	Custom curve units. The units (\%) for each of the 11 point-pairs in the custom curve.	R/W
01 to 91	3	Any	N/A	Custom message action equation. Allows an action equation to be accessed for each of the 10 custom messages (see note on Page 5-35). For message 1 use parameter 01 For message 2 use parameter 11 For message 3 use parameter 21 and so on.	R/W
c0 to c 9	5	Any	N/A	Custom message colours 00 $=$ violet 03 $=$ green 01 $=$ red 04 $=$ blue 02 $=$ black 05 $=$ brown	R/W
DM	0	0 to 9	N/A 0	Custom message manual trigger. Writing any value to this parameter causes the selected custom message to be printed. Channel entry: 0 to 9 (Message 1 to 10 respectively).	Write only
$\begin{gathered} \text { s0 to s9 } \\ \text { BE } \end{gathered}$	FF	Any	$\begin{gathered} 1,2 \\ 3 \end{gathered}$	Custom message texts 1 to 10. 16-character alpha-numeric message. Miscellaneous operator bits. Toggle various commands on and off.	R/W
BE			$\begin{aligned} & 4 \\ & 5 \end{aligned}$	Low to high transition cancels instrument alarms Not used	R/W
			6	Chart advance. $0=o f f ; 1=$ on	R/W
			7	Pen park. $0=$ printhead not parked; $1=$ printhead parked Not used	R/W
			9	Low to high transition triggers replay history.	R/W
			10 11 to 15	Low to high transition cancels alarm messages.	R/W R/W
			$\begin{gathered} 11 \text { to } 15 \\ \mathrm{~N} / \mathrm{A} \end{gathered}$	Not used	R/W
				Comms key enable. $0=$ Comms key off; $1=$ comms key on. Not used	R/W
		Any		Range magnified channels. The channels to be range magnified.	R/W
ZC	1				
Z	6	Any	N/A	Channel magnification factor. Values less than 1 expand the range (making the signal appear smaller). Maximum value $=1000$. The entered value is rounded to two decimal places.	R/W
ZQ	3	Any	N/A	Range magnify action equation. The triggers which are to activate range magnification (see note on page 5-35).	R/W

* 'Any' in the CN column, means that any valid CN may be used - see table 5.7.5a

Table 5.7.5h Miscellaneous parameter definitions

5.7.6 DATA FORMATS

Table 5.7.6a lists the data formats used in the accessing of recorder parameters. The following conventions are used:
A An alpha-numeric character.
D A decimal numeric entry.
H A hexadecimal character. (four bits) from 0 to F .
> ASCII 3E. This character precedes a Hex value.
\downarrow ASCII 1F. This character is used as a unit separator.
\uparrow ASCII 1E. This character is used as a record separator.
ASCII 60. This character precedes an alpha-numeric value.

Format		№ of bytes	Description
340 *	El Bisynch		
0	5	5	Four hex characters (only two used). i.e. $>00 \mathrm{HH}$
1	5	5	Four hex characters i.e. > HHHH
2	23	11	10 hex characters i.e. $>$ HHHHHHHHHH
3	23	17	16 hex characters i.e. $>$ HHHHHHHHHHHHHHHH . Each bit defines an action equation trigger as defined in table 5.7.6b.
5	6	2	Two decimal characters i.e. DD
6	20	6	A five-digit decimal number as shown below. At least one character must precede the decimal point. DDDDD. -DDDDD. (For negative values) DDDD.D -DDDD.D (For negative values) DDD.DD -DDD.DD (For negative values) DD.DDD -DD.DDD (For negative values) D.DDDD -D.DDDD (For negative values)
7	21	10	A nine digit decimal number with the decimal point after the final character i.e. DDDDDDDDD.
8	$\begin{gathered} 25 \\ (20: 6) \end{gathered}$	15	A 'scientific notation' decimal number with a five-digit mantissa and two digit exponent. The + sign before the mantissa is optional, but + or must occur before the exponent: $\uparrow+$ D.DDDD \downarrow-DD
9	22	6	Five alphanumeric characters used for units of measure i.e. 'AAAAA
A	22	7	Six alphanumeric characters used for a batch number i.e. 'AAAAAA
B	22	17	Sixteen alphanumeric characters used for descriptor srings i.e. 'AAAAAAAAAAAAAAAA
D	$\begin{gathered} 25 \\ (6: 6) \end{gathered}$	18	Twelve digits in separated pairs: $\uparrow m m \downarrow H H \downarrow D D \downarrow M M \downarrow Y Y \downarrow$ SS used for time and date. If $S S=0$, then the year number is read. If $S S=1$, he year number is ignored. $\mathrm{mm}=$ minutes; $\mathrm{HH}=$ hours; $\mathrm{DD}=$ day number; $\mathrm{MM}=$ month number; $\mathrm{YY}=$ year least significant digits.
$\begin{aligned} & \text { FE } \\ & \text { FF } \end{aligned}$	5 5	5 5	Four hex characters for Read Only parameters i.e. $>$ HHHH Four hex characters for changing bit parameters i.e. $>\mathrm{HHHH}$
* 340 format is that quoted in the 'Format' column in tables 5.7 .5 c to 5.7 .5 h inclusive			

Table 5.7.6 a Data Format definition

5.7.6 DATA FORMATS (Cont.)

FORMAT THREE (ACTION EQUATIONS).

Format three allows all possible combinations of triggers to be coded in a 16-character hex word:
>HHHH HHHH ННHH НННH

Where character 1 comes immediately after the $>$ character.
The table opposite gives details of all the triggers, and the hex values to be inserted into each of the 16 characters.
EXAMPLE 1. An action equation is required to causes a log to occur whenever any of the totalisers (TT1 to TT6), Timer 4 (TM4), or Alarm four of channel one (A14) gives an output.

In order to achieve this, parameter LQ would have the value $>003 F 080000000040$ as follows:

EXAMPLE 2. An ENQ of parameter SQ (alternative chart speed action equation) results in the return of the value:

$$
>0000110100000001
$$

Characters 5, 6, 8 and 16 all have the value 1 , and with reference to table 4.8 .6 b , it can be seen that the alternative chart speed wil be initiated if Alarm 1 of channels 1,2 or 3 becomes active, or if the softkey is operated.

5.7.6 (Cont.)

Character 1		No	8															
	---	No	4															
	C16	No	No	Yes	Yes	No	2											
	C15	No	Yes	No	Yes	No	1											
	Hex	0	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	
Character 2	Cl4	No	Yes	8														
	Cl3	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	Cl 2	No	No	Yes	Yes	2												
	$\mathrm{Cl1}$	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 3	---	No	8															
	---	No	4															
	TT6	No	No	Yes	Yes	No	2											
	TT5	No	Yes	No	Yes	No	1											
	Hex	0	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	
Character 4	TT4	No	Yes	8														
	TT3	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	TT2	No	No	Yes	Yes	2												
	TT1	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 5	A24	No	Yes	8														
	A23	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A22	No	No	Yes	Yes	2												
	A21	No	Yes	1														
	Hex	0	,	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 6	A14	No	Yes	8														
	A13	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A12	No	No	Yes	Yes	2												
	A11	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 7	A44	No	Yes	8														
	A43	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A42	No	No	Yes	Yes	2												
	A41	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 8	A34	No	Yes	8														
	A33	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A32	No	No	Yes	Yes	2												
	A31	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 9	A64	No	Yes	8														
	A63	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A62	No	No	Yes	Yes	2												
	A61	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 10	A54	No	Yes	8														
	A53	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	A52	No	No	Yes	Yes	2												
	A51	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Character 11	A84	No																
	A83	No	4															
	A82	No	2															
	A81	No	1															
	Hex	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Character 12	A74	No	8															
	A73	No	4															
	A72	No	2															
	A71	No	1															
	Hex	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Character 13	COM	No	Yes	Yes	No	8												
	---	No	4															
	---	No	2															
	GLA	No	Yes	No	No	No	No	No	No	Yes	No	1						
	Hex	0	1	0	0	0	0	0	8	,	0	0	0	0	0	0	0	
Character 14		No	8															
	A93	No	4															
	A92	No	2															
	A91	No	1															
	Hex	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Character 15	---	No	8															
	TM4	No	No	No	No	Yes	Yes	Yes	Yes	No	4							
	TM3	No	No	Yes	Yes	No	No	Yes	Yes	No	2							
	TM2	No	Yes	No	Yes	No	Yes	No	Yes	No	1							
	Hex	0	1	2	3	4	5	6	7	0	0	0	0	0	0	0	0	
Character 16	TM1	No	Yes	8														
	LOG	No	No	No	No	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Yes	4
	INA	No	No	Yes	Yes	2												
	KEY	No	Yes	1														
	Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	

Table 5.7.6b Format three (action equations)

5.7.7 CHARACTER SET

Two sets of characters are available for use with the communications link, as shown in tables 5.7.7a and 5.7.7b below. The characters in table 5.7.7a can generally be sent direct form the keyboard, or alternatively, by using the <ESC> key, followed by the hex value of the character as shown in the table.

The characters in table 5.7.7b can only be transmitted to the recorder using the <ESC> key followed by the hex value of the character as shown in the table. For example, to send a degree symbol, the keys <ESC><C> must be used.

Note...
The \# symbol may not be sent directly from the keyboard. If required, it must be sent as <ESC><2><3>
Characters are transmitted by the recorder as ASCII codes 00 to 7 F and escape sequences <ESC>80 to <ESC>DF

Table 5.7.7a Character set 1

5.7.7 CHARACTER SET (Cont.)

Table 5.7.7b Character set 2

5.7.8 BASIC PROGRAM

This section includes a simple basic program to run on IBM $®$ compatible PCs. Unmodified, the program writes a 'random' number to the recorder, and then reads it back to ensure that the link is operating correctly. The program itself is not intended for use as it stands, but is included to give guidance, especially in the reading and writing routines.

Notes...

1. This section is included to give an example of the sort of program which may be used. The manufacturer does not guarantee that the program will run successfully with every version of BASIC, nor with every type of personal computer (PC)
2. It is assumed that the user is familiar with the PC to the extent that text files and simple programs can be entered.
3. Before any writing of PVs can take place, the relevant channel's 'Function' must be set to 'comms'.

PROGRAM LISTING

90 ANSWER\$=""
100 WRITE\$=""
110 On error GOTO 340
120 CLS
130 CLOSE
140 OPEN "COM1:9600,e,7,1" AS \#1
150 OPEN "SCRN:" FOR OUTPUT AS \#2
160 If LOC(1) THEN ANSWER\$=INPUT\$(LOC(1),\#1)
170 Z=TIMER+1
180 WHILE TIMER<Z : WEND
190 PRINT
200 PRINT "WROTE,,"REC'D","ENQUIRED","REC'D"
210 GOSUB 3010:
220 PRINT \#1,Write\$:
230 PRINT \#2,MID\$(WRITE\$,2,LEN(WRITE\$)-3),
240 GOSUB 1020
250 PRINT \#2,ANSWER\$,
260 GOSUB 2010
270 PRINT \#1,WRITE\$;
280 PRINT \#2,WRITE\$
290 GOSUB 1020:
300 PRINT \#2,MID\$(ANSWER\$,2,LEN(ANSWER\$)-3)
$310 \quad \mathrm{~V} \$=\operatorname{STR} \$\left(100^{*} \operatorname{RND}(1)\right)$:
$320 \quad \mathrm{~V} \$=\mathrm{MID} \$(\mathrm{~V} \$, 1,7)$:
330 GOTO 160
340 Print "error No ";ERR:RESUME 130
350 REM number and resume
:REM Set up group address
:REM Set up Unit address
:REM Set up Channel address
:REM Set up parameter mnemonic
:REM Set up value to be written to parameter
:REM Read from 34X
:REM Write to 34X
:REM Use "REM" to disable this whilst de-bugging
:REM Set comms parameters
:REM Change for file later
:REM Clear input buffer
:REM 1 second delay between readings
:REM Make up write string to send
:REM Send string to $34 X$
:REM Write string to file
:REM Get reply
:REM Write reply to file
:REM Make up string to send
:REM Send enquire to 34X
:REM Print enquiry to file
:REM Get reply
:REM Write reply to file
:REM Change the PV
:REM Get in correct form
:REM Catch errors, print error

5.7.8 BASIC PROGRAM LISTING (Cont.)

```
1000
1010
1 0 2 0 ~ Z 1 = T I M E R + . 8 ~ : R E M ~ I n s t r u m e n t ~ l a t e n c y ~
1030 ANSWER$=""
1 0 4 0 \text { WHILE TIMER<Z1 :WEND}
1050 WHILE LOC(1) :REM Get next char. and wait 30ms.
1060 IF LOC(1) THEN ANSWER$=ANSWER$+INPUT$(LOC(1),#1)
1070 Z1 = TIMER + .03: WHILE TIMER <Z1:WEND :REM 1 character at 300 Baud
1080 WEND
1090 RETURN
```

REM To send an enquiry
Q\$=G\$+G\$+U\$+U\$+C\$+M\$

RETURN

REM Writing

WRITE\$=WRITE\$+Q\$
$\mathrm{B}=0$
$\mathrm{T}=\mathrm{T} / 2$
TE=FIX(T)
$\mathrm{T}=\mathrm{TE}$
NEXT M:
NEXT N:
FOR M = 1 TO 8
$B=B+2^{\wedge}(M-1)^{*} B(M)$

```
REM==========================================================================12
REM Get a reply from the instrument
Z1=TIMER+. \(8 \quad\) :REM Instrument latency
ANSWER \(\$="=\)
WHILE TIMER<Z1 :WEND
WHILE LOC(1) :REM Get next char. and wait 30ms.
IF LOC(1) THEN ANSWER\$=ANSWER\$+INPUT\$(LOC(1),\#1)
= TIMER + .03: WHILE TIMER <Z1:WEND :REM 1 character at 300 Baud WEND
RETURN
```



```
WRITE \(\$=C H R \$(4)+Q \$+C H R \$(5) \quad: R E M\) EOT GGUUCMn ENQ
REM=========================================================================12
WRITE \(=\) CHR \(\$(4)+G \$+G \$+U \$+U \$+C H R \$(2) \quad: R E M\) EOT GGUU STX
Q\$=C\$+M\$+V\$+CHR\$(3) :REM CMnValue ETX
FOR \(\mathrm{N}=1\) TO LEN(Q\$) :REM IF THE HOST SUPPORTS XOR
\(\mathrm{T}=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{Q} \$, \mathrm{~N}, 1)) \quad:\) REM REPLACE LINES 3080 TO 3190 INC.
FOR M = 1 TO \(8 \quad\) REM WITH " \(B=\operatorname{ASC}(M I D \$(Q \$, N, 1))\) XOR B"
IF TE-T<>0 THEN \(O(M)=1\) ELSE \(O(M)=0\)
IF \(B(M)<>0\) THEN \(B(M)=1 \operatorname{ELSE} B(M)=0\)
WRITE \(\$=\) WRITE \(\$+\) CHR \(\$(B) \quad:\) REM Append BCC character
Notes...
1. Where more than one statement (including REMark) is made on one line, the statements must be separated by a colon.
2. To leave the program, press \(<\) Shift \(><\) Ctrl \(><\) Break \(>\) simultaneously.
```


5.7.9 'C’ PROGRAM

The following program, written in ' C ', uses the El Bisynch protocol to communicate with the recorder. The main program (MAIN) calls the following routines:

1. Init port. Sets the communications Baud rate (9600 Baud), seven data bits, one stop bit and even parity.
2. Send byte. Send a single character to the communications port.
3. Get byte. Receives a single character from the communications port.
4. Get byte filt. Receives a single character from the communications port, allowing for a latency delay.
5. Send address. Sends EOT GGUU to the communications port.
6. Select cmd. Sends STX, channel address and command mnemonic to the communications port.
7. Get reply. Waits for a message to be returned from the instrument.
8. Poll value. Reads the value of the parameter polled

USING THE PROGRAM

When the program starts running, the message:

```
Enter group and unit address (no spaces) e.g. 2211 :
```

appears, requesting the group and unit IDs (see section 5.7.3) for the recorder to be accessed. Entry of the appropriate address, followed by a carriage return causes the following message to appear:

Enter channel number 1 to \{:
Entry of the appropriate CN (table 5.7.5a) for the required parameter, followed by a carriage return, causes the message:

```
Enter command and data (no spaces) e.g.PV12.345 or Q to quit: to appear.
```

To read the current value of the relevant mnemonic, the mnemonic should be entered, followed by a carriage return. The response will be a message containing the channel number, parameter mnemonic and the current value.

To write a new value to a parameter, its mnemonic should be entered, followed immediately (i.e. without any spaces) by the value to be written, followed by a carriage return. The response will be the message:
Acknowledged.

In either case, the response is followed by the

```
Enter channel number 1 to {: message.
```

In order to leave the program, or to address a further recorder, Q (or q) should be entered in response to the

```
Enter command and data e.g.PV+12.345 or Q to quit: message.
```


Note...

The + sign may be omitted, but if so, a space character MUST precede the value to be written.

5.7.9 C PROGRAM (Cont.)

PROGRAM LISTING

```
/******************************************************************************
FILENAME : 346tst.c
VERSION : 1.0
AUTHOR : CMAN
SYSTEMS : MSDOS compiled with Microsoft C 6.0
DESCRIPTION : This program uses the EI Bisync protocol to talk to a 346
*********************************************************************************/
#include <stdio.h>
#include <bios.h>
#include <ctype.h>
\begin{tabular}{llll} 
\#define & NUL & (char) & \(0 \times 00\) \\
\#define & NAK & (char) & \(0 \times 15\) \\
\#define & STX & (char) & \(0 \times 02\) \\
\#define & EOT & (char) & \(0 \times 04\) \\
\#define & ETX & (char) & \(0 \times 03\) \\
\#define & ENQ & (char) & \(0 \times 05\) \\
\#define & ACK & (char) & \(0 \times 06\) \\
\#define & TRE & \(0 \times 8000\)
\end{tabular}
void send_byte(int,char);
void send_address(int,char *);
void init_port(int,int);
char poll_value( int, char *, char *, char *, char * );
char select_cmd( int, char *, char *, char *, char * );
char get_reply( int, char * )
char get_byte( int );
char get_byte( int );
char get_byte_filt( int );
```

```
5.7.9 C PROGRAM LISTING (Cont.)
/***************************************************************************
FUNCTION : INIT PORT
DESCRIPTION : This routine is used to initialise the comms port to the selected baud
    rate and sets 7 data bits with even parity.
ARGUMENTS : port = port offset.
    baud = Required baud rate of port.
RETURNS : Void
NOTES : Supported Baud rates are 300, 600, 1200, 2400, 4800 and 9600.
    Supported ports are COM1-4 (0-3)
void init_port(port,baud)
int port,baud;
{
    unsigned status,service, databyte;
        switch(baud)
    {
        case 300:
                baud=_COM_300;
                break;
        case 600:
                baud=_COM_600;
                break;
        case 1200:
                baud=_COM_1200;
                break;
        case 2400:
                baud=_COM_2400;
                break;
        case 4800:
                baud=_COM_4800;
                break;
        default :
        case 9600:
                baud=_COM_9600;
                break;
    }
    service = _COM_INIT;/* _COM_SEND _COM_RECEIVE _COM_STATUS */
    databyte = _COM_CHR7 |_COM_STOP1 | _COM_EVENPARITY | baud ;
    (void) _bios_serialcom(service, port, databyte);
}
```

```
5.7.9 C PROGRAM LISTING (Cont.)
```

```
****************************************************************************
```

**
FUNCTION : SEND BYTE
FUNCTION : SEND BYTE
DESCRIPTION : This routine sends a single char "byte" out of the comms port.
DESCRIPTION : This routine sends a single char "byte" out of the comms port.
ARGUMENTS : port = port offset.
ARGUMENTS : port = port offset.
RETURNS : A character sent via the BIOS routines.
RETURNS : A character sent via the BIOS routines.
NOTES
NOTES
void send_byte(int port, char byte)
void send_byte(int port, char byte)
{
{
while((_bios_serialcom(_COM_SEND,port,byte) \& TRE) !=0) ;
while((_bios_serialcom(_COM_SEND,port,byte) \& TRE) !=0) ;
}
}
/**
/**
FUNCTION : GET BYTE
FUNCTION : GET BYTE
DESCRIPTION : This routine gets a single character "byte" from the comms port.
DESCRIPTION : This routine gets a single character "byte" from the comms port.
ARGUMENTS : port = port offset.
ARGUMENTS : port = port offset.
RETURNS : A character via the BIOS routines.NOTES:If there is no byte to get,
RETURNS : A character via the BIOS routines.NOTES:If there is no byte to get,
this will lock up on an XT or time-out after 1 sec. on an AT
this will lock up on an XT or time-out after 1 sec. on an AT
*)
*)
char get_byte(int port)
char get_byte(int port)
{
{
return((char)_bios_serialcom(_COM_RECEIVE,port,0) \& 0x7f);
return((char)_bios_serialcom(_COM_RECEIVE,port,0) \& 0x7f);
}
}
/***
/***
FUNCTION : GET BYTE FILT
FUNCTION : GET BYTE FILT
DESCRIPTION : This routine gets a single character "byte" from the comms port, but
DESCRIPTION : This routine gets a single character "byte" from the comms port, but
allows for a latency time delay in the first character.
allows for a latency time delay in the first character.
ARGUMENTS : port = port offset.
ARGUMENTS : port = port offset.
RETURNS : A character via the BIOS routines, or NUL if nothing seen.NOTES:This
RETURNS : A character via the BIOS routines, or NUL if nothing seen.NOTES:This
will lock up on an XT or time-out after 1 second on an AT
will lock up on an XT or time-out after 1 second on an AT
char get_byte_filt(int port)
char get_byte_filt(int port)
{
{
char buff;int i = 10;/* Try char ten times then quit. */
char buff;int i = 10;/* Try char ten times then quit. */
while(((buff= get_byte(port)) == NUL) \&\& (i- >=0));
while(((buff= get_byte(port)) == NUL) \&\& (i- >=0));
return(buff);
return(buff);
}

```
}
```

```
5.7.9 C PROGRAM LISTING (Cont.)
M, SEND ADDRESS 
void send_address( int port, char *addr )
{
    int i;
    send_byte(port,EOT);
    for(i=0;i<4;i++)
        send_byte( port, *addr++ );
}
/**************************************************************************
FUNCTION : SELECT CMD
DESCRIPTION : This routine selects the 34X instrument
ARGUMENTS : port = port offset.
                                addr = pointer to instrument address (GGUU)
                                cmd = pointer to command to be used
                                chan = pointer to channel character
                                reply = pointer to reply buffer
RETURNS : Should return ACK, but also NUL, ETX, EOT or NAK NOTES
                *****************************************************************************************
char select_cmd( int port, char *addr, char *cmd, char *chan, char *reply )
{
    char bcc;
    send_address(port,addr);
    send_byte(port,STX);
    send_byte(port,*chan);
    bcc= *chan; /*Initialises BCC*/
    bcc ^= *cmd; /*XORs with first character*/
    while( * cmd != NUL )
    {
        send_byte( port, *cmd++ ); /*XOR with subsequent characters*/
        bcc ^= *cmd;
    }
    bcc ^=ETX; /*XOR with ETX*/
    send_byte(port,ETX); /*Send ETX*/
    send_byte(port,bcc); /*Send BCC*/
    return( get_reply( port, reply )); /* return ACK or NAK */
}
```


5.7.9 C PROGRAM LISTING (Cont.)

```
FUNCTION : GET REPLY
DESCRIPTION : This routine waits for a message to be returned from the instrument.
    Latency delays are allowed for on the first character. The checksum
    is tested in messages ending with ETX
ARGUMENTS : port = port offset
    reply = pointer to character buffer for received message.
RETURNS : NUL = failed. Otherwise, last letter of message ETX, EOT, ACK,
    NAK.
NOTES :
******************************************************************************
char get_reply( int port, char *reply )
{
    char bcc = NUL; /* Initialise BCC */
    int i = 25; /* Wait for first non NUL character of the reply.*/
    if ( (*reply = get_byte_filt( port )) == NUL )
        return( NUL ); /* Timeout: return NUL */
                            /****** Receive the rest of the message.******/
    while (( *reply != ETX ) && ( *reply !=EOT ) &&( *reply != ACK ) &&
                ( *reply !=NAK ) &&( -i >=0))
    {
        if ( *reply == STX ) /* In case another STX arrives */
                bcc = NUL; /* Re-initialise BCC */
        else bcc ^= *reply; /* XOR with current character */
        *++reply = get_byte(port);
    }
                                    /****** Verify the message checksum.******/
    if ( *reply == ETX )
    {
        bcc ^= *reply;
        (void) printf("calculated chsum= %x ",bcc);
        *++reply = get_byte(port); (void) printf("received cksum= %x \n", *reply );
        bcc ^= *reply;
        *reply = NUL; /* Overwrite checksum with NUL */
        if ( bcc != NUL )
                return( NUL ); /* Checksum error: return NUL */
                return( ETX ); /* ETX: Good bcc received. */
    }
    else
    {
        *++reply = NUL; /* Write NUL after non ETX character */
        return( *-reply ); /* Return with last character received */
    }
}
```

```
5.7.8 C PROGRAM LISTING (Cont.)
/******************************************************************************
FUNCTION : POLL VALUE
DESCRIPTION : This routine polls (reads from) the 34X instrument
ARGUMENTS : port = port offset
    addr = Pointer to instrument address (GID GID UID UID)
    cmd = Pointer to the command to be used
    chan = Pointer to channel character
    reply = Pointer to reply buffer
RETURNS : Should returnETX but also NUL, EOT, ACK, and NAK.
NOTES :
****************************************************************************
char poll_value( int port, char *addr, char *cmd, char *chan, char *reply )
{
    send_address(port,addr);
    send_byte(port,*chan);
    while( *cmd != NUL )
    send_byte( port, *cmd++ );
    send_byte(port,ENQ);
    return( get_reply(port,reply) );
}
```


5.7.9 C PROGRAM LISTING (Cont.)

```
*******************************************************************************
FUNCTION : MAIN
DESCRIPTION : Top level of example of 346 comms program
ARGUMENTS : None
RETURNS : Void
NOTES -
************************************************************************************
void main()
{
    int i, port, baud;
    char address[5], chan[2], command[40];
    char reply[40];
    port = 0;
    baud = 9600;
    init_port( port, baud );
    (void) printf("\nEnter group address and unit address(no spaces)
                                    e.g. 2211 :");
    (void) gets( address );
    command[0] = '_';
    for(;;)
    {
            (void) printf("Enter channel number 1 to { : ");
            (void) gets( chan ); (void) printf("Enter command and data (no spaces)
                                    e.g. PV12.345 or Q to quit: ");
            (void) gets( command );
            if ( !strcmp( command, "Q" ) || !strcmp( command, "q" ))
            exit(0);
            if ( command[2]== NUL ) /* Read */
            {
                if ((poll_value(port, address, command, chan, reply )) == NUL )
                    {
                                    if (strlen(reply) != 0 )
                                    (void) printf("\nChk Sum Failed\n");
                                    else (void) printf("\nNo reply\n" );
                    }
                else
                {
                    if ( reply[0] == EOT )
                            (void) printf("\nUnrecognised command\n");
                            else (void) printf("\n %s \n\n", reply );
                }
            }
            else /* Write */
            {
            if ((select_cmd( port, address, command, chan, reply )) != ACK)
                (void) printf("\nNo acknowledge\n");else (void) printf("\nAcknowledged\n");
            }
    }
}
```


5.7.10 COMMUNICATIONS PROBLEMS

Assuming that the hardware and software configurations are correct, the following problems may arise.

1. It is essential that the correct case (ie. capitals or lower case) is used for the mnemonics as shown in table 5.7 .5 b . Failure to ensure this will result in a NAK being returned.
2. It is essential that the correct 'leading character' is used when writing an alpha-numeric or Hexadecimal string. Alpha-numeric values MUST be preceded by an apostrophe (') and Hex values must be preceded by >. The format tables 5.7.6 a and b explain the various formats used. Failure to ensure this will result in a NAK being returned.
3. If the wiring is incorrect (e.g. Tx + and Tx-crossed over) it is possible that the host will pick up a reflection, and instead of 'No Response', a copy of the Enquire or Write message will be returned.
4. Before writing a value to a PV can be accomplished, the relevant channel's function must be configured to 'comms'.
5. Before writing to the instrument, Comms "Read/Write" must be set NOT Read Only.

5.8 RETRANSMISSION OPTION

5.8.1 INTRODUCTION

This option provides up to three isolated outputs, each capable of driving loads of up to 600Ω. These outputs are linearised and scaled versions of any input channel, derived channel or derived variable, and can be configured as either 0 to 20 mA or 4 to 20 mA , as a part of the software (menu) configuration described below.

At the rear terminals of the recorder, located as shown below, the signal can be taken directly as a current output, or if a voltage output is required, the signal is taken from an integral 250 resistor. If the output set up in the menu is defined as 0 to 20 mA , then the equivalent voltage range appearing across the resistor will be 0 to 5 Volts; if the output is defined as 4 to 20 mA , then the equivalent voltage range will be 1 to 5 Volts

The retransmission terminations are shown here in option board 2 position (Slot 4). The board can alternatively be fitted in option board position 1 (slot 3) See section 2.4 .5 for further details.

Figure 5.8.1 Re-transmission terminal locations

CAUTION

DAMAGE WILL BE CAUSED TO THE TERMINAL BLOCKS IF THE SCREWS ARE OVER-TIGHTENED. THE RECOMMENDED MAXIMUM TORQUE IS O.4Nm.

5.8.2 SIGNAL WIRING

As shown in figure 5.8 .2 below, each of the three re-transmission outputs has three connections associated with it. For current output, the signal is taken from I (source) and C terminals. For voltage output, V and I terminals are linked, and the signal appears across the V (positive) and C terminals.

Figure 5.8.2 Signal wiring for current and voltage outputs

5.8.3 CONFIGURATION PAGES

RE-TRANSMISSION SOURCE

This page defines the signal which is to be re-transmitted. Any channel or derived variable can be selected. In the case of channels, the re-transmitted voltage is linearised and scaled before being re-transmitted.

RE-TRANSMISSION OUTPUT RANGE

The up / down arrow keys are used to scroll between ' 0 to 20 ' or ' 4 to 20 ' mA for the output range. If voltage outputs are required, a range of 0 to 20 mA will give a voltage range of 0 to 5 Volts; a range of 4 to 20 mA will give a voltage range of 1 to 5 Volts.

RE-TRANSMISSION LOW AND HIGH OUTPUTS

These two pages allow values to be assigned to the output range limits, in channel (DV) units. For example, the input source may be scaled 0 to $1000^{\circ} \mathrm{C}$, but the required re-transmitted output may range only between 400 and $800^{\circ} \mathrm{C}$. In such a case, and if an output range of 4 to 20 mA has been chosen, then 4 mA will represent $400^{\circ} \mathrm{C}$ and 20 mA will represent $800^{\circ} \mathrm{C}$. Thus 400 and 800 would be the re-transmission low and high outputs entered using the numeric keys.

5.8.3 RETRANSMISSION OPTION CONFIGURATION PAGES (Cont.)

Figure 5.8.3 Re-transmission configuration menu arrangement

5.8.4 CALIBRATION

INITIAL SET-UP

For the channel concerned:
a. Connect ' V ' re-transmission terminal to the input channel's '+' terminal
b. Connect ' C ' re-transmission terminal to the input channel's '-' terminal
c. Connect re-transmission terminals ' I ' and ' V ' together using a short link or jumper.

Note... The above steps must be carried out before the calibration is started, or the calibration process will fail.

CALIBRATION

Referring to section 6.3 as necessary, access the 'Cal Retrans' calibration page. Select the relevant re-transmission output and operate the ENTER key.

After the calibration of the first output is complete, this process can be repeated for any further re-transmission channels, wiring each one in turn to channel one, before operation of the ENTER key for that output.

5.9 TRANSMITTER POWER SUPPLY OPTION

This option supplies six 25 -Volt (nominal) isolated outputs, each of which is intended to supply a remote transmitter running a 0 to 20 mA or 4 to 20 mA current loop.

Physically, the option consists of two circuit boards and associated output terminal blocks located in the rear terminal cover of the recorder. Figure 5.9 shows an overall view of the option.

Figure 5.9 Over-all view of transmitter power supply option.

5.9.1 WIRING

SUPPLY VOLTAGE WIRING

With this option fitted, the mains (line) input is no longer applied by the user to the L and N terminals as indicated in figure 2.3. Mains input is terminated instead, at a terminal block in the rear terminal cover. (The 'non-user' side of the terminal block is supplied already connected to the L and N terminals on the rear panel of the recorder.)

The Safety Earth connection must still be made to the Earth stud as indicated in figure 2.3.

FUSES

The value of the 20 mm . anti-surge fuse varies according to the supply voltage, as shown in the table below.

Supply Voltage	Fuse value	Fuse part Number
$110 / 120$	100 mA	CH050012
$220 / 240$	63 mA	CH050630

SIGNAL WIRING

Signal wiring for a typical channel is shown below.

Figure 5.9.1 Transmitter power supply signal connections

This page is deliberately left blank
SECTION 6: SERVICING INFORMATION
List of contents
Section Page
6.1 W ARRAN TY STATEM EN T 6-2
6.1.1 LIM ITATIO N OF WARRAN TY 6-2
6.1.2 DISCLAIMER 6-2
6.1.3 EXCLUSIVE REM EDIES 6-2
6.1.4 CALIBRATIO N ACCURACY 6-2
6.2 IN STRUM EN T ALARM S 6-3
6.3 CALIBRATIO N 6-5
6.3.1 CALBRATION PAGES 6-5
PRIN THEAD 6-5
CHAN NELRANGES 6-6
CJ SEN SOR 6-6
RESTO RE FACTO RY CO N FIG URATIO N 6-8
VIEW O PTIONS 6-8
RETRA N SM ISSIO N O PTIO N 6-8
CALIBRATIO N PRO CEDURE 6-10
6.4 PRIN TIN G ADJUSTM EN TS 6-10
6.4.1 DO T IN TEN SITY A DJUSTM EN T 6-10
6.5 SERVICE PARTS LISTIN G 6-11

SECTION 6 SERVICING INFORMATION

6.1 WARRANTY STATEMENT

This product is warranted against defects in materials and workmanship for twelve months from the date of shipment. During the warranty period the manufacturer will, at its option, either repair or replace products which prove to be defective.

Warranty service at the buyer's facility can be provided only upon prior agreement by the manufacturer or its representative, and the buyer may be required to pay round-trip travel expenses.

In all cases the buyer has the option of returning the product for Warranty service to a facility designated by the manufacturer or its representatives. The buyer shall prepay shipping charges for products returned to a service facility, and the manufacturer or its representative shall pay for the return of the product to the buyer.

6.1.1 LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects arising from:

1. Improper or inadequate maintenance by the user.
2. Improper or inadequate site preparation
3. Unauthorised modification or misuse.
4. Operation of the product in unfavourable environments, especially high temperature, high humidity, corrosive or other damaging atmospheres.

6.1.2 DISCLAIMER

No other warranty is expressed or implied. The manufacturer specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

6.1.3 EXCLUSIVE REMEDIES

The remedies provided above are the buyer's sole and exclusive remedies. The manufacturer shall not be liable for any direct, indirect, special incidental or consequential damages.

6.1.4 CALIBRATION ACCURACY

This product was thoroughly tested to ensure compliance with the published specifications. All instruments used in production and final test are regularly inspected to maintain accuracy of calibration traceable to the National Bureau of Standards. The user should be satisfied that the performance of the product as received meets expectations and, as a part of a program of planned maintenance, should periodically check calibration accuracy against reliable standards.

WARNING

THE PRODUCT COVER(S) SHOULD NOT BE REMOVED BY OTHER THAN QUALIFIED SERVICE PERSONNEL. HIGH AND LETHAL VOLTAGES ARE PRESENT AT EXPOSED POINTS ON THE CHASSIS IF POWER IS APPLIED. THE MANUFACTURER SHALL NOT BE LIABLE FOR PERSONAL INJURY OR PROPERTY DAMAGE SUFFERED IN SERVICING THE PRODUCT. THE PRODUCT SHOULD NOT BE MODIFIED OR REPAIRED IN A MANNER AT VARIANCE WITH PROCEDURES ESTABLISHED BY THE MANUFACTURER.

6.2 INSTRUMENT ALARMS

The recorder has self test software to monitor all critical operations. Entry into the instrument alarms is through the last item in the main configuration menu and the last item in the operator menu.

If a flashing "l" appears, the following menu item should be accessed and the ENTER key operated to review the item(s) which may be causing an instrument alarm.

```
Inst. Alarm ?
```

The Instrument Alarm menu items are as follows:

1. Battery low. The RAM battery is reported to have a voltage below 2.5 volts. At this point the battery should be replaced to ensure retention of accumulated data and operation of the clock/calendar when the recorder power is off. For recorders fitted with annotation pen trays, a 'Battery low' message is printed on the chart, after each power-up.

Note...
A battery low message is normal when the recorder is turned on after an extended shut down period. There is no battery problem if the alarm enunciator stops after a few minutes.
2. ROM bad. The basic software PROM is checked during initialisation which occurs when the recorder is turned on or when abnormal operation is detected by self-test software. Any change sets the Instrument Alarm. If 'ROM Bad' is reported, call the supplier for service assistance.

At recorder initialisation, the integrity of stored information and calibration data is checked, and returns a failure message, as detailed below, if any of the checks fails. Should the recorder determine that both the EEPROM and RAM memories of an item have changed, the recorder loads default data from the system PROM and sets the instrument alarm.

If any data has been lost, one or more of the following messages may be displayed by operating the page scroll key.

1. Input prog X. Each measuring channel (X) is checked for lost input type, Hi/Lo limits, range Hi/Lo limits, units and CJC type. See Section 4.8 for channel configuration information.
2. Input Cal. X. Each input channel (X) is checked for lost calibration data. See Section 6.3 for calibration information.
3. Factory Cal. X. Each input channel (X) is checked for lost factory calibration data. If 'Factory Cal.' is reported, the supplier should be contacted for service assistance.
4. CJC Cal. X. The input board is checked for cold junction compensation calibration data. See section 6.3 for CJC calibration information.
5. Chan. Prog. X. Each channel (X) is checked for lost chart Hi/Lo Limits, annotation choice, or interpolation data. See Section 4.8 for channel configuration information.
6. Chart Prog. The calibration of the servo carriage is checked. See section 6.3 for carriage calibration information.

6.2 INSTRUMENT ALARMS (Cont.)

7. History Prog. The configuration of the trace history function is checked. See section 5.4 for history configuration information.
8. Misc. Prog. Not used.
9. Channel Adj. X Each channel (X) is checked for loss of channel adjust settings. See Section 4.8 for channel adjust configuration information.
10. Channel Desc. X. Each channel (X) is checked for loss of the channel descriptor. See section 4.8 for channel descriptor configuration information.
11. Alarm Prog. XX. Each alarm (1-1 to 6-4) is checked for loss of configuration data. See section 4.10 for Alarm configuration
12. Custom Msg. XX. Each custom message (XX) is checked for any change in text. See section 5.3 for custom message information.
13. Alarm Msg. XX. Each alarm message (1-1 to 6-4) is checked for any change in text. See section 4.10 for alarm configuration information.
14. Custom Curve. All data for the custom curve is checked. See instrument menu (section 4.9) for custom curve configuration information.
15. Relay Prog. $X X$. Each relay (XX) configuration is checked. See section 5.1 for relay configuration information.
16. $D V$ Prog. X. Each derived variable ($D V X$) is checked. See section 5.6 for Derived Variable configuration information.
17. Totaliser X. Each totaliser (X) is checked for configuration data changes. See section 5.2 for totaliser configuration information.
18. Timer X . Both timers are checked. See section 4.12 for timer configuration information.
19. Custom Msg. $X X$. Each custom message ($X X$) is checked for any change in text. See section 5.4 for custom message review information.
20. Alarm Msg. XX. Each alarm message (1-1 to 6-4) is checked for any change in text. See section 4.10 for alarm configuration information.
21. Custom Curve. All data for the custom curve is checked. See instrument menu (Section 4.9) for custom curve configuration information.
22. Relay Prog. XX. Each relay (X) configuration is checked. See section 5.1 for relay configuration information.
23. $D V$ Prog. X. Each derived variable ($D V X$) is checked. See section 5.6 for derived variable configuration information.
24. Totaliser X. Each totaliser (X) is checked for configuration data changes. See section 5.2 for totaliser configuration information.
25. Timer X. Both timers are checked. See section 4.12 for timer configuration information.

Note...
Review all 'Lost' displays using the page key only. A double operation of the ENTER key with any of these displays present turns off the 'Lost' displays and confirms to the recorder that all present configuration and calibration data is acceptable for use.

6.3 CALIBRATION

The instrument calibration function permits:

1. The calibration of input channels, using precision signal standards.
2. Calibration of the thermocouple cold junction compernsation using a thermocouple at a known temperature, or a precision thermocouple simulator.
3. Alignment of pens with the chart.
4. Determination of which software features are installed in the recorder.

Note...Calibration of RTDs sets only the excitation current for the resistance device. The actual measuring accuracy depends on the millivolt gain span in use. Thus, to ensure maximum RTD accuracy, all millivolt ranges should first be calibrated.

6.3.1 CALIBRATION PAGES

```
Change Cal?
No
```

This is the default selection. The up/down arrow keys are used to change the selection to one of the following: 1. Annotator carriage. The ENTER key is used to start alignment of the annotator pen with the chart. 2. Inut channel. The ENTER key is operated to gain entry to the channel calibration menus.
3. CJ sensor. The ENTER key is used to start calibration of the cold junction sensor.
4. Factory Cal. Restores factory calibration.
5. Servo pen. The ENTER key is used to start calibration of the pen tips relative to the chart.
6. View options. Operation of the ENTER key causes the options display to appear.
7. Retransmission. Operation of the ENTER key calibrates the output channel.

PRINTHEAD

Change Cal?

Ann. Carriage
Operation of the ENTER key calls the display below, and moves the printhead to a position just beyond chart zero. By opening the display and operating the side arrow, the trace can be moved to coincide with the chart zero grid line. Should a mistake be made, and the adjustment go too far, operation of the CLEAR key causes the printhead to return to its initial position to the left of chart zero.

```
Set Carr. Left
'C' avoids change
```

Once the adjustment is successfully accomplished, operation of the ENTER key saves the new alignment. To exit the carriage alignment menu, the CLEAR key is operated. Otherwise the page scroll key is operated to call the display below, and the printhead moves to a position just to the left of chart full scale. With the display open, the trace can be aligned with the chart full scale grid line. Should a mistake be made, and the adjustment go too far, operation of the CLEAR key will reset the printhead position to the left of the full scale line.

$$
\begin{aligned}
& \text { Set Carr right } \\
& \text { 'C' avoids change }
\end{aligned}
$$

Once the adjustment has been completed, operation of the ENTER key saves the new alignment. To exit the carriage alignment menu, the CLEAR or Page scroll key is operated to return to the 'Change Cal?' display.

6.3.1 CALIBRATION PAGES (Cont.)

CHANNEL RANGES

This calibration procedure allows the selection of a specific hardware range for the recorder to use. Refer to section 1.3 for details of the available hardware ranges.

```
Change Cal?
    Input Channel
```

Operation of the ENTER key allows a channel number to be chosen, using the up/down arrows, followed by ENTER.

```
Choose Range
```

 20 mV
 Operation of the up/down arrow keys allows the hardware range to be selected from the list below. Because the recorder internal operating span (gain) is chosen automatically when range low and high are entered (section 4.8), it is recommended that all ranges are calibrated. $20 \mathrm{mV}, 60 \mathrm{mV}$ (this range must be calibrated before the CJC is calibrated), $80 \mathrm{mV}, 200 \mathrm{mV}, 400 \mathrm{mV}, 1.7 \mathrm{~V}$ (this range must be calibrated before the CJC), 2.5 V , 5.0 V , Ohms (RTD current defined.)

Note...
Precision input sources must be connected and set to the proper value before this calibration procedure is continued.

```
C1 Apply High
    20.00 mV
```

The input source should be set to the displayed value (20 mV in this example). Operation of the page scroll key enters the new calibration, after a short delay accompanied by a 'Wait' message at the display. The process is repeated for the apply low display. Should it not be practical to attain exactly the suggested input value, the up/down /side arrow keys are used to enter that value which is attainable.

Once the adjustments are complete, the CLEAR key is operated twice to return to the 'Change Cal ?' display.

CJ SENSOR

This part of the calibration procedure requires the connection of a type J thermocouple, at a known temperature, or of a Type J thermocouple simulator.

```
Change Cal?
```

 C J Sensor
 Operation of the ENTER key allows the selection of input board 1 or 2 for calibration, by means of the up/down arrow keys, followed by ENTER.

```
Enter Ref. Temp.
    XX.X *}\textrm{C
```

The up/down/side arrows are used to enter the type J or simulator Input temperature.
An alternative method is to short-out the input of channel 1 , measure the temperature between channel 1 and 2 input terminals (as closely as possible to the CJ sensor), and to enter this value as a reference temperature.

6.3 CALIBRATION (Cont.)

Figure 6.3 Calibration configuration menu arrangement

6.3.1 CALIBRATION PAGES (Cont.)

RESTORE FACTORY CONFIGURATION

```
Change Cal?
    Factory Cal
```

The ENTER key is operated to re-install the original factory calibration for all channels.
Note...This choice replaces current calibration with constants stored during manufacture of the input amplifier board(s). Restoration does not change user entered configuration data.

```
Factory Cal
ENTER to confirm
```

The ENTER key is operated to return all input amplifiers to initial factory calibration.

VIEW OPTIONS

```
Change Cal?
    View Options?
```

Operation of the Enter key calls the display below, which consists of 16 hexadecimal characters used to display the combination of options fitted to the recorder in question. The table below shows the interpretation of these characters. Character 1 is at the left-hand end of the display; character 16 at the right-hand end.

RETRANSMISSION OPTION

PRE-CALIBRATION WIRING

Note...
Before carrying out the calibration of a retransmission channel, the following procedure must be carried out.

For retransmission channel 1 , remove any existing wiring from input channel 1 and retransmission channel 1. Link retransmission channel V and I terminals, then link retransmission channel 1 V and C terminals to input channel $1+$ and - terminals respectively (see figure below).

The wiring is identical for other channels, with retransmission channel ' n ' output being connected across input channel ' n '.

6.3.1 CALIBRATION PAGES (Cont.)

Table 6.3 Interpretation of option display

6.3.1 CALIBRATION PAGES (Cont.)

CALIBRATION PROCEDURE

```
Change Cal?
Cal Retrans
```

Operation of the enter key allows the relevant channel to be selected using the up and down arrows.

```
Cal Retrans?
    I
```

Once the required channel has been selected, a further operation of the enter key calls the 'confirm' page.

```
    Cal Retrans?
ENTER to confirm
```

A final operation of the enter key causes the calibration to take place, during which process, a 'Wait' message appears at the display. Once all the relevant channels have been calibrated, the outputs should be disconnected from the input channels, and any signal wiring connected.

6.4 PRINTING ADJUSTMENTS

6.4.1 DOT INTENSITY ADJUSTMENT

If the recorder is mounted with the rear of the case lowered in a sloping panel, it may be necessary to increase the printhead force to regain dot intensity lost as a result of panel angle. Conversely, if the rear of the case is raised, it may be desirable to decrease dot intensity to obtain the sharpest printing and longest pen life.

Access to the pen force adjustment potentiometer is made through a vertical slot located just behind the voltage selector switch. Rotating the potentiometer adjustment screw clockwise increases dotting force, and viceversa. Force measurement is carried out with a deflection type gram gauge as follows:

Enter the Calibration Menu and choose 'Ann. Carriage'.
With the annotator pen slowly dotting at the left end, release the chart cassette latch. Place the gauge under a coloured tip to measure the force. The correct force range is 6 to 9 grams.

6.5 SERVICE PARTS LISTING

DESCRIPTION	PART NUMBER
PRINT TRAY	
Printhead (colour cartridge) LA128969	
Print carriage motor LA204026	
Digital Display .. LA204096	
CHARTS	
Roll chart (xxx divisions) GD128971Uxxx	
Z-fold chart (xxx divisions).................. GD128970Uxxx	
Where xxx = Number of chart divisions required.	
Choose from 040, 045, 050, 060, 070, 075	
CASSETTES	
Chart Motor	. LA246818
Roll chart casse	LA243070
Take-up spoo	LA235184
Roll chart casse	LA245781
Paper Hold-d	BD235456
Take-up spool	LA241071
Front flap	BE242661
Z-fold chart cas	LA243800
Z-fold paper	. BD245066
CHASSIS	
Main board 340PCB/344/Le/Sy/SC	
Where:	
Le = English, French, German	
Sy = ac or dc (24Vnom)	
SC = last two or three characters of instrument serial number (status code)	
Mother board .. AH204824	
1 Channel input board AH204120U100	
2 Channel input board AH204120U200	
3 Channel input board AH204120U300	
Pen driver board \qquad AH204349 Lithium \qquad PA234093	
2 Relay board AH204100U002	
4 Relay boardAH204100U004	
6 Relay boardAH204100U006	
$1 \mathrm{o} / \mathrm{p}$ Retransmitter board AH204220U100	
2 o/p Retransmitter board AH204220U200	
3 o/p Retransmitter board AH204220U300	
6 i/p Event Input board AH204000U200	
RS422 comms and 6 event i/p AH204000U346	
Fuse, 1 Amp (110V ac/24V dc supply) CH050012	
Fuse, 500 mA (240V supply) CH050630	

DESCRIPTION PART NUMBER
CASE AND DOOR
6 way terminal block (CJC) LA243768
1 way terminalblock (Gold) LA235121
3 way terminalblock (Gold) LA235123
6 way terminal block (Tin) LA235132
Shunt assembly (100 Ohms) LA245132UK10
Shunt assembly (250 Ohms) LA245132UK25
Attenuator; 100:1 (1 Megohm) LA246482
Transmitter PSU 120V LA245786U130
Transmitter PSU 110V LA245786U330
Fuse, 100 mA for $110 / 120 \mathrm{~V}$ units CH050012
Transmitter PSU 240V LA245786U230
Transmitter PSU 220V LA245786U430
Fuse, 63mA for 220/240V units CH050630
DIN mounting clip and rod assy. LA129716
Door Lock: DIN with key FI129237
Door Hinge Pin BE128709
Door Pin Spring BH243983
Rear terminal cover (short) BD246925
Rear terminal cover (long) LA245875
Mains cover DH235221
ACCESSORIES
Carrying cradle LA233098
Padded carrying case LA242698
Service manual HA245946
UPGRADE
3 i/p channel adder kit LA246934
Non-volatile storage AH204153
Communications software RD204715
2-Relay adder kit LA247388U200
4-Relay adder kit LA247388U400
6-Relay adder kit LA247388U600
6 event i/p adder kit LA247643
CEM adder kit LA247640U146
ANNEX A
CONFIGURATION GUIDE
LIST OF CONTENTS
Section Page
A 1.0 IN TRO DUCTIO N A - 3
A 1.1 CLEAR KEY O PERATIO N A - 3
A 2.0 O PERATO R MENU A - 4
A 3.0 CHAN NELCON FIG URATIO N A - 6
A 3.1 IN PUTCHANNELS A - 6
A 3.2 DERIVED CHANNELS A - 8
A 4.0 IN STRUM EN T CO N FIG URATIO N A-10
A 5.0 ALARM CON FIG URATIO N A - 12
A 6.0 RELAY CON FIG URATIO N A - 15
A 7.0 TO TA LISER CON FIG URATIO N A-16
A 8.0 LO G GIN G CON FIGURATIO N A-18
A 9.0 CUSTO M MESSAGECON FIGURATIO N A-19
A 10.0 TIM ER CON FIG URATIO N A-20
A 11.0 TRACE HISTO RY CO N FIG URATIO N A-22
A 12.0 RAN GE MAGNIFY CON FIG URATIO N A - 23
A 13.0 DERIVED VARIABLE CO N FIG URATIO N A-24
A 14.0 COMMUN ICATIO N S CO N FIG URATIO N A-26
A 15.0 RETRA N SM ISSIO N CO N FIG URATIO N A-27
A 16.0 ACCESS TO CON FIGURATIO N A-29

This page is deliberately left blank

ANNEX A
 CONFIGURATION GUIDE

A1.0 INTRODUCTION

This section is intended as a quick guide to the configuration menus of the recorder. The operator menu is presented first, followed by the configuration menus as the appear when using the page scroll key in the 'main menu', assuming that all available options are fitted.

The order is as follows:

1. Operator menu
2. Channel configuration. The channel number selected determines whether a measuring channel or a derived channel is selected for configuration.
3. Instrument configuration
4. Alarm configuration
5. Relay option configuration
6. Totaliser option configuration
7. Logging functions configuration
8. Custom message option configuration
9. Timer option configuration
10. Trace history option configuration
11. Range magnify option configuration
12. Derived variable option configuration
13. Communications option configuration
14. Retransmission option configuration

The remaining two main menu displays, 'View instrument alarms' and 'Calibration change' are not discussed in this annex. Full details appear in section 6 of the manual.

A1.1 CLEAR KEY OPERATION

The Clear key has two functions as follows:

1. During configuration, if a mistake is made in entering the required information, the Clear key can be used to restore the entry to its previous state, PROVIDING THE ENTER KEY HAS NOT BEEN OPERATED.
2. Whilst scrolling through menu pages, the Clear key acts as the inverse of the Enter key. In other words, whenever the Enter key has been used to access a certain menu level, the Clear key can be used to return to the previous level. The menu diagrams in this annex are intended to show only the organisation of the various menus; for this reason they have been simplified and do not show all the Clear key operations.

A2.0 OPERATOR MENU

Entered by a single press of the right arrow key on the control panel, whilst any background (measured value) display is present.

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Softkey	On/off	This parameter appears only if operator access to the softkey function has been enabled in the Instrument Configuration menu. If enabled, by setting the softkey to 'ON', the operator can initiate any function that includes 'key' in its action equation. Refer to section 3.4 for further details.
View total.	1 to 6	Operation of the Enter key causes the current value of the selected totaliser to be displayed. Operation of any key returns the operator to the menu.
Rset Total?	1 to 6	Operation of the Enter key initiates the resetting of the selected totaliser's value.
Pri Chart Spd	None	Operation of the Enter key allows a chart speed to be entered using the up, down and side arrow keys. The units are set as $\mathrm{mm} / \mathrm{hr}$ or $\mathrm{in} / \mathrm{hr}$ as a part of the Instrument Configuration.
Chart Advance	On/Off	The up or down arrow keys are used to set the chart advance function on or off. When selected ON, the chart advances at full speed until chart advance is selected OFF again.
Chart Hold	On/Off	The up and down arrow keys are used to set chart hold on or off. When selected ON, the chart drive and printing functions are inhibited, until the Chart hold is selected OFF again.
Pen Park	On/Off	The up and down Arrow keys are used to set the Pen Park function on or off. When selected ON, the chart stops, the printhead is driven to the centre of its travel, and all printing is inhibited, to allow the printhead to be changed safely. Once the pprinthead has been changed, the up or down arrow key is used to set pen park to OFF.
Alarm configuration	None	This page appears only if operator access to alarm set-up has been enabled in the Instrument Configuration. If access is allowed, then the operator can configure alarms as described in the alarm configuration section of this manual.
Batch Number	None	This page allows the up, down and side arrow keys to be used to enter a batch number to appear on the chart.
Print Log	None	The enter key is used to cause the log to print. If not required, operation of the Clear key returns the operator to the menu.
Range Magnify	On/Off	The up or down arrow is used to select the Range Magnification function on or off. See section 5.5 for further details.
Replay Hist?	None	The enter key is used to initiate the printing of trace history. If not required, operation of the Clear key returns the operator to the menu.
Alt. Chart Spd	On/Off	The up or down arrow key is used to set the alternative chart speed (set up in the Instrument Configuration) on or off.
Alarm Msg Cancl	None	The Enter key is used to cause all queued alarm messages to be cancelled. If this is not required, operation of the Clear key returns the operator to the menu.
View DV val?	1 to 9	Operation of the Enter key causes the current value of the selected DV to be displayed. Subsequent operation of any key causes a return to the menu.
Reset DV?	1 to 9	Operation of the Enter key causes a reset of the selected derived variable value.
Print message	1 to 10	Operation of the Enter key initiates the printing of the selected custom (user entered) message.
Time and Date	None	Operation of the up, down, and side arrows allow a time and date to be entered in 24 -hour format. The displayed and printed format (12- or 24 -hour format is set in Instrument configuration.
Inst Alarms		See section 6.2 of this manual

Table A2.0 operator menu parameters

A2.0 OPERATOR MENU (Cont.)

Figure A2.0 Operator menu

A3.0 CHANNEL CONFIGURATION

A 3.1 INPUT CHANNELS

DISPLAY	SCROLLABLE VALUES	\quadDESCRIPTION OF PARAMETER OR FUNCTION
	On/Off/Adaptive	The up or down arrow key is used to set this channel's trace on, off or
Trace		
adaptive.		

Table A3.1 Measuring channel configuration parameters

A3.1 INPUT CHANNEL CONFIGURATION (Cont.)

Figure A3.1 Measurement channel configuration menu

A3.2 DERIVED CHANNELS

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Trace	On/Off	The up or down arrow key is used to select this chanel's trace on or off.
Interplt.	On/Off	The up or down arrow key is used to select interpolation on or off for this channel.
Pen colour	Violet, brown, blue, green,black, red	Allows the trace colour for the channel to be defined.
Source DV	Off, DV1 to DV9	Allows the input source for the channel to be defined.
Units	${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$, Prog units	Allows degrees Celsius, degrees Fahrenheit or programmable units to be selected as the channel's displayed units. The programmable units string (if used) is entered later.
Dec. Point	None	The up and down arrow keys are used to move the decimal point position for the channel display left and right respectively, between 'X.XXXX' and 'XXXXX.'
Units Str.	Text entry	This page appears only if Prog.Units has previously been selected. The up, down and side arrow keys are used to enter a units string as described in section 4.4 of this manual.
Chart low	None	The up, down and side arrow keys are used to enter chart 'zero'.
Chart high	None	The up, down and side arrow keys are used to enter chart full scale.
Range low	None	The up, down and side arrow keys are used to enter a range low value for use with Range Magnify and Trace History options.
Range high	None	The up, down and side arrow keys are used to enter a range high value for use with Range Magnify and Trace History options.
Mag. centre	None	Allows a value to be entered for use as a centre point for Range Magnify and Trace History options.
Ch. Desc.	Text entry	The up, down and side arrow keys are used to enter a channel descriptor as described in section 4.4 of this manual.

Table A3.2 Derived channel configuration parameters

A3.2 DERIVED CHANNEL CONFIGURATION (Cont.)

Figure A3.2 Derived channel configuration menu

A4.0 INSTRUMENT CONFIGURATION

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Alt Chart Spd	None	The up, down and side arrows are used to enter the 'alternative' chart speed. The conditions under which the chart drive switches to this setting are determined by the alternative chart speed action equation (below).
Spd Act Eq	Cl1 to CI6, TT1 to TT6, A11 to A64 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the available triggers for changing chart speed. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.
Cht Hold Eq.	As Spd Act Eq. above	As for alternative chart speed action equation above, but for chart hold
Print Mode	Overprint, Breaktrace, No print	The up and down arrow keys are used to enter the required print mode. See section 3.5 of this manual for more details.
ID Number	None	The up, down and side arrow keys are used to enter the required identification number for printing on the chart.
Time Format	12, 24	The up and down arrow keys are used to select the required time format (i.e. 12 or 24 hour clock).
Chart spd Unit	$\mathrm{mm} / \mathrm{hr}, \mathrm{in} / \mathrm{hr}$	The up and down arrow keys are used to select the required chart speed units.
Soft key En.	Yes, No	The up and down arrow keys are used to define whether the softkey is to be accessible from the operator menu. If NO is selected, the softkey on/off display does not appear in the operator menu.
Soft key Desc.	Text entry	The up, down and side arrow keys are used to enter a descriptor for the softkey, as described in section 4.4 of this manual.
Password	None	The up, down and side arrow keys are used to enter a new password.
Alarm access	On, Off	The up and down arrow keys are used to define whether alarm configuration is to be available from the operator menu. If Off is selected, then the 'Alarm configuration' display does not appear in the operator menu.
Custom Curve	None	Operation of the Enter key allows access to the custom curve configuration. See section 4.9 of this manual for full details.
Ext. CJC Temp	None	The up and down arrow keys are used to enter the temperature of the external cold junction, if the internal compensation of the recorder id not to be used. A TEMPERATURE MUST BE ENTERED HERE IF COLD JUNCTION COMPENSATION IS SET TO 'EXTERNAL' FOR ANY CHANNEL.

Table A4.0 Instrument configuration parameters

A4.0 INSTRUMENT CONFIGURATION (Cont.)

Figure A4 Instrument configuration menu

A5.0 ALARM CONFIGURATION

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Alarm channel	$1,2,3,4,5,6,7,8,9$	The up and down arrow keys are used to select the channel for which the alarm is to be configured. Operation of the Enter key confirms.
Alarm number	1, 2, 3, 4	The up and down arrow keys are used to select which of the four alarms associated with the chosen channel is to be configured. Operation of the Enter key confirms.
Alarm type	Off, High, Low, Deadband Rate-Rising, Rate-Falling	The up and down arrows are used to scroll through the available types of alarm. See section 4.10 of this manual for further details. If OFF is selected, no further configuration is possible for the alarm; operation of the Clear key causes a return to the 'Alarm Number' display, where further alarms for the selected channel can be configured.
Setpoint	None	The up, down and side arrow keys are used to enter the setpoint for the alarm, in channel display units.
Hysteresis	None	The up, down and side arrow keys are used to enter the hysteresis for the alarm in channel display units.
Deadband	None	This display appears only if the selected alarm type is 'Deadband'. The up, down and side arrow keys are used to enter the deadband value for the alarm, in channel display units. Note that the value set here is set both above and below the setpoint previously entered. For example, a setpoint of 50 units with a deadband of 10 units will have a total deadband with of 20 units, stretching from 40 to 60 units.
Alrm Print	On, Off	Allows printing of the alarm on and off messages (see below) to be enabled (selected ON), or disabled (selected OFF).
Rate Base	/sec, /min, /hour	This display appears only if the selected alarm type is 'Rate-Rising', or 'Rate-Falling'. The up and down arrow keys are used to select a base time over which the rate-of-change setpoint value is to be measured.
Message	Text entry	The up, down and side arrow keys are used to enter message string to be printed whenever the alarm becomes active and whenever it becomes inactive. The enabling of the printing of this message is described in 'Alrm Print' above.

Table A5.0 Alarm configuration parameters

A5.0 ALARM CONFIGURATION (Cont.)

Figure A5.0 Alarm configuration menu

This page is deliberately left blank

A6.0 RELAY CONFIGURATION

Figure A6.0 Relay configuration menu

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Type	Off Act eq Output Tot. Retrans.	Output relay inoperative (always energised). Output relay state depends on action equation (below). Output relay operates momentarily every N counts of a totaliser (se- lected in 'Source' below), where N is set up as a part of the totaliser's configuration. Refer to section 5.2 of this manual for further details. The up and down arrow keys, followed by Enter, are used to select relay type.
Act Eq	CI1 to CI6, TT1 to TT6, A11 to A94The up, down and side arrow keys are used to scroll through the avail- able triggers for operating 'Act Eq Output' relay types. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu. Operation of the up or down arrow key allows a totaliser to be selected for 'Tot. Retrans.' type relays.	
Source	Tot. 1 to Tot. 6	

Table A6.0 Relay configuration parameters

A7.0 TOTALISER CONFIGURATION

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Type	Off	Totaliser inoperative
	Continuous	Totaliser increments until reset by overflow, manual reset, or action equation.
	Preset down	Totaliser resets to a preset figure, then counts to zero.
	Preset up	Totaliser resets to zero, then counts to a preset figure.
Note...		
	Both preset types output an internal	trigger which can be used (amongst other things) to reset the totaliser.
Source	Ch 1 to 9; Contact inputs 1 to 6	Allows the totaliser input source to be defined as any channel or any event input contact closure.
Factor	None	Allows entry of a scaling factor. See section 5.2 of this manual for details.
Units	Text entry	Allows the entry of a five-character text string as a units-of-measurement for the totaliser value. See section 4.4 of this manual for further details.
Preset	None	This display appears only if 'preset up' or 'preset down' is selected as totaliser type. Allows the entry of either a high or a low preset value for the totaliser.
Low Cutoff	None	Allows a minimum count level to be established. For input signals below this value, the totaliser will not be incremented.
Hi Cutoff	None	Allows a maximum count level to be established. For input signals above this level, the totaliser will not be incremented. The default value is the channel's Overrange value (full scale $+10 \%$).
Resettable	Yes, No	If NO is selected, the totaliser will not reset under any reset equation or operator action conditions. If YES is selected, the totaliser will respond to all reset stimuli from reset equation or operator action.
Rset Eq	Cl1 to Cl6, TT1 to TT6, A11 to A94 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the available triggers for resetting the totaliser. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.
Cntr. Out	On, Off	Used to switch the counter on or off. The scaling described below can be used to reduce the totaliser output counter frequency if required. It is this output which can be used as the 'Tot. N' source for output relays.
Out. Fact?	None	Allows the division factor to be entered.
Tot Desc.	Text entry	Allows a descriptor for the totaliser to be entered. See section 4.4 of this manual for details of text entry.

Table A7.0 Totaliser configuration parameters

A7.0 TOTALISER CONFIGURATION (Cont.)

Figure A7.0 Totaliser configuration menu

A8.0 LOGGING CONFIGURATION

Figure A8.0 Logging configuration menu

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Log Chans	1 to 9	Allows the numbers of those channels which are to be logged, to be entered. Operation of the Clear key causes a return to the menu.
Log total.	1 to 6	Allows the numbers of those totalisers which are to be logged, to be entered. Operation of the clear key causes a return to the menu.
Log Act Eq	Cl1 to Cl6, TT1 to TT6, A11 to A94 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the available triggers for initiating the log. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.

Table A8.0 Logging configuration parameters

A9.0 CUSTOM MESSAGE CONFIGURATION

Figure A9.0 Customer message configuration menu

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Message	text entry	Allows the entry of the selected message string. Refer to section 4.4 of the manual for more details.
Color	Violet, brown, blue, green, black, red	Allows the colour, in which the message is to be printed, tobe defined
Logic	CI1 to CI6, TT1 to TT6, A11 to A94 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the avail- able triggers for initiating message printing. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.

Table A9.0 Customer message configuration parameters

A10.0 TIMER CONFIGURATION

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Type	Off	Timer inoperative
	Clock	The timer 'follows' the recorder clock, and outputs an internal trigger when the specified time and date occur. Refer to section 4.11 of the manual for further details.
	Periodic	The timer outputs a trigger at the end of a specified time period. The trigger can be used as a self reset, so the timer becomes a repetitive timer. A clock timer can be used to initiate a periodic timer at a particular time and date. See section 4.11 for further details.
Clockout	Minutes only	Clock triggers once every hour at the minutes setting.
	Minutes and hour	Clock triggers once a day at the time specified.
	Minutes, hour and day number	Clock triggers once a month on the specified date and time
	Minutes, hour, Day, Month	Clock triggers once a year at the specified time on the specified date.
	Mins, Hour, Day, Month, Year	Clock triggers at the time and date specified.
		This display appears only if 'Clock' has been specified as timer type.
Duration	None	Allows the duration (in minutes), of a periodic timer to be set.
		This display appears only if 'Periodic' has been selected as timer type.
Rset Eq?	Cl1 to Cl6, TT1 to TT6, A11 to A94	The up, down and side arrow keys are used to scroll through the avail-
	GLA, KEY, INA, LOG, TM1 to TM4	able triggers for resetting the periodic timer. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.
		This display appears only if 'Periodic' has been selected as timer type. Note that a timer can be used to reset itself if required.

Table A10.0 Timer configuration parameters

A10.0 TIMER CONFIGURATION (Cont.)

Enter period or time/date as appropriate

$\square \square$

Enter reset eqn. if period
timer selected

Figure A10.0 Timer configuration menu

A11.0 TRACE HISTORY CONFIGURATION

Figure A11.0 Trace history configuration menu

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Hist Chart Spd	None	Allows the chart speed for chart history to be selected
Mag. Factor	None	Allows a trace magnification factor to be entered for trace history.
Mag Chans.	1 to 9	Allows those channels, the traces of which are to be magnified during trace history, to be entered.
Hist Act Eq?	CI1 to CI6, TT1 to TT6, A11 to A94 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the available triggers for initiating trace history. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.

Table A11.0 Trace history configuration parameters

A12.0 RANGE MAGNIFY CONFIGURATION

Figure A12.0 Range magnification configuration menu

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER FUNCTION
Mag. Factor	None	Allows a magnification value to be entered.
Mag. Chans.	1 to 9	Allows the numbers of those channels which are to be magnified to be entered. Once confirmed, using the Enter key, the Clear key is used to return to the menu.
Mag Act Eq?	CI1 to CI6, TT1 to TT6, A11 to A94 GLA, KEY, INA, LOG, TM1 to TM4	The up, down and side arrow keys are used to scroll through the avail- able for initiating range magnification. See section 3.4 of the manual for full details. Once the action equation entries have been made, the Enter key is used once to confirm them, and the Clear key used to return to the menu.

Table A12.0 Range magnification configuration parameters

A13.0 DERIVED VARIABLE CONFIGURATION

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Function	Off	Used to turn a DV function off.
	Add	Add input 1 to input 2.
	Subtract	Subtract input 1 from input 2.
	Divide	Divide input 1 by input 2
	Multiply	Multiply input 1 by input 2
	Lin. slope	Input 2 times input 1 plus input 3 (i.e. $\mathrm{ax}+\mathrm{b}$).
	High select	Output is the higher of input 1 and input 2
	Low select	Output is the lower of input 1 and input 2
	High peak	Output is the highest value reached since last reset.
	Low peak	Output is the lowest value reached since last reset.
	Average	Input 1 is sampled every (input 2) seconds and added to the total so far.
	Polynomial	Output $=$ Input $2+($ input $3 x$ input 1$)+\left(\right.$ input $4 x$ input $\left.1^{2}\right)+$ (input $5 x$ input 1^{3}). (I.E. $\left.Y=A+B X+C X^{2}+D X^{3}\right)$
	Log 10	Output $=$ input $2 \times \log _{10}$ of input 1
	Power 10	Output $=$ input $2 \times 10{ }^{\text {input } 1}$
	Flow, Sq.Rt	See section 5.6
	Flow, Linr.	See section 5.6
	$\mathrm{F}_{\text {value }}$	See section 5.6
	RH	See section 5.6
	ZrO_{2} Sensor	See section 5.6
Input N	Constant	Enter a constant value for input N
	Channel 1 to 6	Enter the number of a measuring channel for input N
	DV 1 to 9	Enter the number of a derived variable for input N
Const. N	None	Enter mantissa and exponent values for any constant.
		This display appears only if one of the inputs has been defined as 'constant'.
Descript.	Text entry	The up, down and side arrow keys are used to enter a string to be used as the derived variable descriptor.
Units	Text entry	The up, down and side arrow keys are used to enter a string to be used as the derived variable units.
Dec. Point	None	the up and down arrow keys are used to move the decimal point position for the channel display, left and right respectively, between ' $X . X X X X$ ' and 'XXXXX.'.

Table A13.0 Derived variable configuration parameters

A13.0 DERIVED VARIABLE CONFIGURATION (Cont.)

Figure A13.0 Derived variable configuration menu

A14.0 COMMUNICATIONS CONFIGURATION

Figure A14.0 Communications configuration menu arrangement

DISPLAY	SCROLLABLE VALUES	DESCRIPTION OF PARAMETER OR FUNCTION
Baud rate	$9600,4800,1200,600,300$	Sets transmission rate to be used between the recorder and the host computer.
Parity	Even, Odd, None	Sets parity.
Flow control	None, XON/XOFF	Allows hardware handshake to be enabled/disabled.
Disable scheme	Read only, Read/Write	Allows the recorder to be configured such that the operator can read parameters, but not write new values to them (read only) or such that the operator can both read and write values (Read/write).
Group ID	None	Allows a group ID to be entered as a part of parameter address.
Unit ID	None	Allows Unit ID to be entered as a part of parameter address.

Table A14.0 Communications option configuration parameters

A15.0 RETRANSMISSION CONFIGURATION

Figure A15.0 Retransmission option configuration menu arrangement
\(\left.\left.\left.$$
\begin{array}{|lll|}\hline \text { DISPLAY } & \text { SCROLLABLE VALUES } & \begin{array}{l}\text { DESCRIPTION OF PARAMETER OR FUNCTION } \\
\text { Source }\end{array} \\
\text { Output type } & 0 \text { to } 9 & \text { Allows any input or derived channel to be selected for retransmission. }\end{array}
$$\right\} $$
\begin{array}{l}\text { Allows one of two input ranges to be selected. The selected current } \\
\text { range is available either as a current or as a voltage signal according } \\
\text { to how the output is wired. See section } 5.9 \text { for details. }\end{array}
$$\right\} \begin{array}{l}Allows a value (in the engineering units of the source channel) to be

assigned to the minimum output (0 or 4 \mathrm{~mA}) of the selected range.\end{array}\right\}\)| Allows a value (in the engineering units of the source channel) to be |
| :--- |
| assigned to the maximum output $(20 \mathrm{~mA})$ of the selected range. |

Table A15.0 Retransmission option configuration parameters

This page is deliberately left blank

Symbols
12/24 hour format selection 4-16
A
Absolute alarms 4-22
Access to configuration 4-5
Accuracy 1-2, 4-11
Action equations overview 3-22
Alarm
Configuration 4-21 to 4-25, A-12 to A-14
By operator 3-19
Examples 4-23
Hysteresis 4-23 to 4-24
Instrument 6-3 to 6-4
Review 3-21
Message
Entry. 4-24
Print on/off 3-20, 4-24
Printing 3-24
Number 4-22
Number per channel 4-22
Rate base 4-24
Setpoint 4-23
Source 4-22
Symbols 3-15
Type 4-22
Alternative chart speed
Configuration 4-14
Selection by operator 3-20
Annotating the chart - 23 to 3 - 26
Annotator
Pen force adjustment 6-10
Trace on/off 4-13
B
Batch Number entry 3-19
Battery
Items backed-up by 1-4
Replacement 3-13 to 3-14
Biassing resistor 5-28
Breaktrace print mode 3-23
C
C key 3-14, 4-3
Calibration 6-5 to 6-10
Accuracy 6-2
Annotator carriage 6-5
Channel ranges 6-6
CJ Sensor 6-6
Overview 6-7
Retransmission option 5-61, 6-10
Cassette
Removal 2-3
Type change 3-2

C (Cont.)

Changing
Cassette type 3-2
Chart
Auto take-up roll cassette 3-6 to 3-7
Manual roll cassette 3-8, 3-9 to 3-10
Password 4-17
Pens 3-12
Supply voltage 2-6
The battery 3-13
Channel
Accuracy 4-11
Adjust 4-13
Annotator trace on/off 4-13
Chart low and high 4-12
Configuration 4-8, A-6
Descriptor 4-13
Display 3-14 to 3-15
Hardware ranges 4-11
Input filter 4-13
Input high and low 4-12
Input type 4-11 to 4-13
Magnification centre 4-13
Range 4-11 to 4-13
Units 4-10
Character set
Communications 5-46 to 5-47
Text entry 4-5
Chart
Advance 3-18
Annotating -26
Hold 3-18
Hold equation 4-14
Replacement
Auto take-up roll cassette 3-6 to 3-7
Manual roll cassette 3-3 to 3-6
Z-fold (Fan fold) 3-8, 3-9 to 3-10
Review 3-11
Span. 4-11 to 4-13
Speed
Alternative 4-14
Change equation 4-14
Selection by operator 3-18
Units 4-16
Tear-off 3-11
Circuit board
Links 2-9 to 2-10
Locations 2-11
CJC
Type selection 4-13
CJC/RTD link 2-9 to 2-10
Clear (C) key 3-14, 4-3, A-3
Clock
Setting 3-21

C (Cont.)

Communications
Basic program
C program
Character set
Configuration
Data formats
Parameter Access 5-34 to 5-42
Protocol ... 5-31 to 5-33
Wiring ..4-4
Configuration
Alarm 4-21 to $4-25, A-12$ to $A-14$
Communications
Cun
Custom message5-11, A-19
Derived channels A - 8 to A-9
Derived variable .. 5-24 to 5-26, A-24 to A-25
Guide ... A - 3 to A - 28
Input channels 4-8, A-6 to A-7
Instrument4-14 to 4-20, A - 10 to A-11
Linearisation table ..4-18
Logging4-26 to 4-27, A-18
Main (top level) menu 4-6 to 4-7
Overview ..4-3
Range magnify 5-14, A - 23
Relay ... 5-3, A-15
Retransmission 5-60, A-27 to A-28
Rules for input channels 2-10
Timer 4-28 to 4-30, A-20 to A-21
Totaliser 5-4, A-16 to A-17
Trace History
5-12, A- 22
Contact (Event) input wiring2-7
Control keys
Escape character equivalents 4-4
Operator interface3-14, 4-3
Control panel ..3-14
Current input wiring ..2-8
Cursor key ..3-14, 4-3
Custom curve (linearisation table).................... 4-18
Custom Message5-10 to 5-11
Configuration5-11, A-19
Printing ..3-25

D

Data formats (communications) 5-43
Date setting ..3-21
Deadband
Alarm description ..4-22
Value ..4-24
Decimal point position
Derived Variable ...5-26
Input channel ..4-10
Default password ..4-17
Derived Variable 5-16 to 5-26
Configuration 5-24 to 5-26, A-24 to A-25
Descriptor ...5-26
Reset..3-21
Reset equation...5-26
Value display ...3-20
Display of channel values.................. 3-14 to 3-15
Down arrow key3-14, 4-3

E

Electrical installation 2-5 to 2-8
Enter key ...3-14, 4-3
Entry of text...4-5

F

Factory configuration, Restoring6-8
Fan fold chart replacement..............................4-13
Filter (input channel)
Fixing the recorder to the panel

H

Hardware range specification 1-2
High speed printing ...3-23
Hysteresis ..4-23
I
I.D. Number ..4-16

Input accuracy ..1-2
Input channel configuration4-8
Input type selection ...4-11
Installation
Electrical ... 2-5 to 2-8
Mechanical ..2-4

Instrument $0-3$ to $0-4$
Alarms .. 6-3 to 6-4
Review ..3-21
Configuration4-14 to 4-20, A - 10 to A-11
Internal triggers and action equations3-22
J
Jack plug wiring ..4-4
L
Linearisation function 4-10
Linearisation table
Entry of custom curve4-18
Link
RTD/CJC... 2-9 to 2-10
TC/RTD .. 2-9 to 2-10
UP/DOWN.. 2-9 to 2-10
Logging ...4-26 to 4-27
Configuration4-26 to 4-27, A-18
Example ..3-25
Initiation by operator3-19

M

Magnification centre
Derived variables ..5-22
Input channels ..4-13
Range Magnify ..5-14
Trace History ..5-12
Maths functions5-16, 5-17 to 5-21
Measured value displays 3-14 to 3-15
Mechanical installation2-4
Memory protection ..1-4
Message printing by operator3-21

N

Number of alarms4-220
Operator
Alarm access enable 4-17
Menu (top level) 3-16, A-4 to A-5
Option board types 2-11
Options fitted, determination of 6-8 to 6-9
Overprint mode 3-23
P
Page scroll key 3-14, 4-3
Panel mounting the recorder 2-4
Parts List 6-11
Password 4-5
Configuration 4-17
Factory setting 4-17
Pen
Accuracy 1-2
Park 3-12, 3-18
Replacement 3-12
Periodic timers 4-28
Power requirements 1-4
Print mode Breaktrace 3-23
Overprint 3-23
Selection 4-16
Printing
Adjustments 6-10
Alarm messages 3-24
Custom messages 3-25
High speed 3-23
Logs 3-25
Magnified traces 3-26
Speed restrictions on, 3-23
Trace history 3-26
R
Range Magnify 5-14 to 5-15
Configuration 5-14, A-23
Control by operator 3-19
Print examples 3-26
Rate alarm setting 4-24
Rate-of-change alarms 4-22
Recorder
Description 1-2
Mounting 2-4
Removal from case 2-3
Specification 1-2 to 1-4
Unpacking 2-3
Relay
Configuration 5-3, A-15
Specification 1-4
Removing the writing system 2-3
Replay History (Operator control of) 3-20
Reset
Derived Variable 3-21
Totaliser 3-18
Resistance thermometer wiring 2-7
Restore Factory Configuration 6-8

R (Cont.)

Retransmission 5-59 to 5-61
Calibration $5-60$, A - 27 to A-28
Configuration
3-14, 4-3
Roll chart replacement
Auto take-up 3-6 to 3-7
Manual 3-3 to 3-6
S
Safety Notes i-3
Scroll down key 3-14, 4-3
Scroll up key 3-14, 4-3
Serial communications 5-27
Setpoint (threshold) setting 4-23
Setting supply voltage 2-6
Softkey
Configuration 4-17
Operation of 3-16
Specification, technical 1-2 to $1-4$
Supply voltage
Selection 2-6
Wiring 2-6
Symbols used on recorder labels i-3
T
TC/RTD links 2-9 to 2-10
Technical specification 1-2 to 1 - 4
Terminating resistor 5-28
Text entry techniques 4-5
Thermocouple input wiring 2-6
Time
Format (12/24 hour) 4-16
Setting 3-21
Timer
Configuration 4-28 to 4-30, A-20 to A-2
Output 4-30
Period Definition 4-30
Periodic 4-28
Reset 4-30
Selection 4-30
Type selection 4-30
Totaliser
Configuration $5-4$ to $5-9, A-16$ to $A-17$
Example 5-4, 5-5
Reset display 3-18
Value display 3-16
Trace History 5-12 to 5-13
Configuration 5-12, A-22
Print examples 3-26
Transmitter power supply 5-62 to $5-64$
U
Units
Channel 4-10
Derived Variable 5-26
Unpacking the recorder 2-3
Up arrow key 3-14, 4-3
UP/DOWN links 2-9 to 2-10
V
View
Derived variable display 3-20
Options 6-8 to 6-9
Timer display 3-19
Totaliser display 3-16
Voltage input wiring 2-6 to 2-7
VT100 emulation 4-4
W
Warrenty Statement 6-2
Wiring
Back panel terminations 2-5 to 2-8
Communications 4-4
Contact (Event) inputs 2-7
Current inputs 2-8
Jack plug 4-4
Resistance thermometer 2-7
Retransmission 5-59 to 5-60
Serial communications 5-27
Supply voltage 2-6
Thermocouple inputs 2-6
Transmitter power supply 5-63
Voltage inputs 2-6 to 2-7
Writing system removal 2-3

Z

Inter-Company sales and service locations

Australia

Eurotherm Pty. Limited.
Unit 10.
40 Brookhollow Avenue,
Baulkham Hills,
NSW 2153

Telephone: 61296348444
Fax: 61296348555
Email: vincelen@eurotherm.com.au or: vince.lendrum@eurotherm.com.au

Austria

Eurotherm Meß-und Regeltechnik GmbH Geiereckstraße 18/1,
A1110 Wien,
Telephone: 4317987601
Fax: 4317987605

Belgium

Eurotherm BV,
Herentalsebaan 71-75,
B 2100 Deurne
Antwerpen
Telephone: 3233223870
Fax: 3233217363

Denmark

Eurotherm Danmark A/S
Finsensvej 86,
DK 2000 Fredriksberg,
Telephone: 4538871622
Fax: 4538872124

Finland

Eurotherm Finland,
Auragaten 12A,
FIN-20100 Åbo
Telephone: 358225060 30/1
Fax: 35822503201

France

Eurotherm Chessell
Une division d'Eurotherm Automation SA, Parc d'affaires,
6, Chemin des Joncs,
BP55
F - 69572 Dardilly, CEDEX
Telephone: 33478664500
Fax: 33478352490

Germany

Eurotherm Meßdatentechnik GmbH
Ottostraße 1,
D-65549 Limburg a.d.Lahn
Tel: 49643191730
Fax: 496431917333

Great Britain

Eurotherm Recorders Limited,
Dominion Way,
Worthing,
West Sussex BN14 8QL
Telephone: 01903205222
Telex: 877296 CHESEL G Fax: 01903203767
Email: Sales@recorders.eurotherm.co.uk or: Support@recorders.eurotherm.co.uk Web: http://www.eurotherm.co.uk

Hong Kong

Eurotherm Limited,
Unit D, 18/F Gee Chang Hong Centre, 65, Wong Chuk Hang Road,
Aberdeen.
Telephone: 85228733826
Telex: 69257EIFEL HX Fax: 85228700148

India

Eurotherm Del India Limited,
152, Developed Plots Estate,
Chennai 600096 ,
Telephone: 91444961129
Fax: 91444961831

Italy

Eurotherm SpA,
Via XXIV Maggio,
I-22070 Guanzate,
Como.
Telephone: 39031975111
Fax: 39031977512

Japan

Eurotherm Business Unit,
Nemic Lambda KK,
Denpa Building,
1-11-15 Higashi Gotanda,
Shinagawa,
Tokyo 141-0022
Telephone: 81334476441
Fax: 81334476442

Korea

Eurotherm Korea Limited,
J - Building
402-3
Poongnab-Dong,
Songpa-Ku
Seoul, 138-040
Telephone: 82224788507
Fax: 8224888508

Netherlands

Eurotherm BV,
Genielaan 4,
2404CH Alphen aan den Rijn,
The Netherlands
Telephone: 31172411752
Fax: 31172417260

Norway

Eurotherm A/S,
Post Boks 650,
N-1411 Kolbotn,
Norway,
Telephone: 4766803330
Fax: 4766803331

Spain

Eurotherm España SA,
Pol. Ind. De Alcobendas,
Calle de la Granja 74,
28108 Alcobendas,
Madrid.
Telephone: 34916616001 Fax: 34916619093

Sweden

Eurotherm AB,
Lundavägen 143,
S-21224 Malmö.
Telephone: 4640384500
Fax: 4640384545

Switzerland

Eurotherm Produkte (Schweiz) AG,
Schwerzistraße, 20,
CH-8807 Freienbach.
Telephone: 41554154400 Fax: 41554154415

United States of America

Eurotherm Recorders Inc.
One Pheasant Run,
Newtown Industrial Commons,
Newtown PA 18940.
Telephone: 12159680660
Fax: 12159680662
Web: http://www.eurotherm.com/chessell e-mail:sales@recorders.eurotherm.com

EUROTHERM

 CHESSELLEUROTHERM RECORDERS LIMITED A member of the Eurotherm PLC Group of Companies Dominion Way, Worthing, West Sussex, BN14 8QL
Telephone: 01903 205222. Telex: 877296. Facsimile: 01903203767 e-mail: Sales@recorders.eurotherm.co.uk e-mail: Support@recorders.eurotherm.co.uk Website: http://www.eurotherm.co.uk

[^0]: * The back-up battery allows RAM data to be retained for approximately one month with power removed form the recorder. A 'Memory Retention' option is available, which stores all data, indefinitely, in an EEPROM.

