
User Guide

HA030511/5

August 2017 (Issue 5)

Eurotherm PAC
Raw Comms

© 2017
All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any
form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in
operating the equipment to which the document relates, without prior written permission of the
manufacturer.

The manufacturer pursues a policy of continuous development and product improvement. The specifications
in this document may therefore be changed without notice. The information in this document is given in good
faith, but is intended for guidance only. The manufacturer will not accept responsibility for any losses arising
from errors in this document.

3

Raw Comms User Guide

Contents

Chapter 1 Overview.. 5
Prerequisites (User Knowledge Assumptions) 5

Related Documents .. 5
Terms .. 5

What is Raw Communications? ... 6
Example Applications .. 6

Compatibility .. 7
Supported Products ... 7

Does my Existing Database Support Raw Comms? 7
T2550 PAC Redundant Processors Support 8
Application and Control Modules .. 8
Raw Comms Licensing ... 9

Chapter 2 RAW_COM Function Block 11
RAW_COM Functional Diagram ... 12
RAW_COM Function Block Fields ... 12

Function Block Variables .. 16
Instrument Options Editor ... 17
Byte Sequence Format .. 18
Structured Text (ST) and Raw Comms .. 18

Chapter 3 LINtools Applications.................................. 19
About LINtools .. 19
LINtools Palette .. 20

RAW_COM Function Block extended fields 21
Online Connection .. 22
Online Reconfiguration ... 22
Creating a Structured Text (ST) Action .. 23

4 Contents

Raw Comms User Guide

Upgrading an Existing Database ... 25
Error Messages ... 29

Chapter 4 Configuration and Examples 31
Raw Comms Configuration .. 31

Configuration of the RAW_COM function block fields 32
Associated Structured Text Action ... 32
Associated SFC .. 32
Further Information and Help .. 33

Examples ... 34
Example 1: Simple Terminal Application 34

Associated Action ... 34
Testing .. 35

Example 2: ASCII Modbus .. 36
Associated Action ... 36

Example 3: Bisync Protocol ... 37
Associated Action ... 38

Index .. 41

5

Chapter 1

Overview

This manual describes the Raw Communications feature implemented
on LIN based products and software and is designed to be read in
conjunction with the related documents listed in "Related Documents"
on page 5.

Prerequisites (User Knowledge Assumptions)
The reader of this document is assumed to have a good working
knowledge of LIN blocks and LIN system functionality. This document
is not intended as a starting point to understanding LIN in general
and more specifically, communication protocols. This manual should
be read after or in conjunction with the documents shown in the
following section.

Related Documents

Terms
The following terms are used in this manual:

Document number Document title

HA082375 U003 LIN Blocks Reference Manual

HA084012 U003 Application & Control Modules Manual

HA029280 Visual Supervisor Handbook

HA029587 Visual Supervisor Tutorial

HA028898 T2550 PAC Handbook

HA263001 U055 LINtools Engineering Studio User Guide
Raw Comms User Guide

6  Chapter 1 Overview
What is Raw Communications?
The RAW_COM Function Block provides the facility for LIN based
products to directly control the transmission and reception of
messages and protocols over a serial link and can also facilitate
multi-node applications if required. It is available for applications
where it is necessary to have low level control of the serial
communications port to provide the flexibility to construct or analyse
messages and protocols exactly as transmitted or received via a serial
link.

The block is based on the PC 3000 Raw Comms block but includes the
additional ability to execute structured text (ST) Actions. It performs
basic functions first and then executes any ST Actions that have been
created. The ST is stored in a file and is handled in the same way as
for an Action block and cannot access data outside the Raw Comms
block. For protocols that are too complex to be handled using the ST
inside the block, an SFC should be used to drive the block which
consequently provides considerable flexibility and is not limited by the
constraints inherent in the block.

The RAW_COM block can be assigned to any serial port if more than
one port is available and is designed for use by LIN instruments
supporting serial communications, e.g. T2550 PAC and Visual
Supervisor. It provides a wide range of low level facilities including:

• Direct access to messages as transmitted or received via the serial
link.

• Independent control of message transmission and reception
(limited to the same Baud rate).

• Selectable echoing of received characters when required.

• User selectable Delete sequence for character deletion when
required.

• Can be used in conjunction with SFCs for complex protocol
support.

• Additional wide string variable blocks to assist in processing long
byte and character sequences.

Example Applications
The RAW_COM function block can typically be used in the following
example applications:

Term Meaning

LIN Eurotherm’s scalable DCS
including elements thereof.

Visual Supervisor Eycon™ 10/20 Visual Supervisor
Raw Comms User Guide

Compatibility 7
• Communication with devices using non-standard protocols, simple
or complex.

• Sending reports to special purpose printers, e.g. Ticket printers.

• Communication with remote Terminals or display devices.

• Communications with Weigh Scales in a single or multi-drop
configuration.

Compatibility
For products that do not support Raw Comms but are caching Raw
Comms function blocks from products that support Raw Comms, data
within the cached block is available for use and wiring in the expected
manner.

Supported Products
Raw Comms is supported by the following products and software.
Upgrading a database to support this function is detailed in
"Upgrading an Existing Database" on page 25.

Does my Existing Database Support Raw
Comms?

This is achieved by checking the ‘Instrument Version’ that the DBF
was created for. Referring to the following figure, right click on the
appropriate DBF as circled below and select the LIN Database tab to
establish the Target version. With reference to the section, "Supported
Products" on page 7, check that the Target version is compatible to
support Raw Comms.

Product Version

T2550 PAC Version 7.0 onwards

Eycon™ 10/20 Visual Supervisor Version 5.0 onwards

Operations Server\NTSE Version 4.9 onwards

LINtools (Tactician) Version 4.9 onwards

T940X, T800 and T640 Not Supported
Raw Comms User Guide

8  Chapter 1 Overview
If the Instrument is a pre-Raw Comms Version, the DBF does not
support Raw Comms and can be upgraded by referring to "Upgrading
an Existing Database" on page 25.

T2550 PAC Redundant Processors Support
The Raw Comms block does not fully support dual redundant
operation in terms of a seamless processor changeover. However it is
possible to have a Raw Comms block running in a dual redundant
system but the following points must be observed.

• The comms ports on a dual redundant system are wired in parallel;
consequently transmission is inhibited by the firmware on the
secondary processor.

• If a processor changeover occurs when the transmit processing is
in the PENDING state, it changes to the ERROR state and any
bytes queued for transmission may be lost. Similarly for receive
processing, resulting in the possible loss of incoming
bytes/characters.

Application and Control Modules
Six additional blocks as shown below have been added to the
Application and Control Module library to assist with processing long
byte and character sequences. These blocks can be used as appropriate
and are covered in detail in the Application & Control Modules
Manual, HA084012 U003.

DBF

Instrument
Raw Comms User Guide

Raw Comms Licensing 9
Raw Comms Licensing
Raw Comms is licensed as part of the Master Communications options
for both the T2550 PAC and Visual Supervisor. If the Master
Communications option was not purchased at the time of order
placement, a licence for the relevant instrument is required. Please
contact a Eurotherm office for further details.

Block name Block function

BYTESEQ48S 20 Variables x 48 Bytes

BYTESEQ256S 4 Variables x 256 Bytes

BYTESEQ1020 1 Variable x 1020 Bytes

WIDESTR24S 20 Variables x 24 Characters

WIDESTR128S 4 Variables x 128 Characters

WIDESTR510 1 Variable x 510 Characters
Raw Comms User Guide

10  Chapter 1 Overview
Raw Comms User Guide

11
Chapter 2

RAW_COM Function Block

The RAW_COM function block provides low level control of a serial
communications port and also has the additional ability to execute
structured text (ST) Actions. The block performs basic functions first
and then executes any ST Actions that have been created. The ST is
stored in a file (.STO) and is dealt with in the same manner as for an
Action block, see "Creating a Structured Text (ST) Action" on page 23.

It is designed for use by instruments supporting serial communication
ports, i.e. T2550 PAC, Eycon 10/20 Visual Supervisor. For full details
refer to the LIN Blocks Reference Manual, HA082375U003 for detailed
information.

Note: Note: On Instruments where multiple user tasks are supported
(e.g. T2550 PAC) the RAW_COM block can be allocated to run on any of
these tasks.
Raw Comms User Guide

12  Chapter 2 RAW_COM Function Block
RAW_COM Functional Diagram
The following figure depicts the functional relationship between the
RAW_COM function block and the communication port with its
associated UART. The communication port fields (Baud, Parity, for
example) are configured using the Instrument Options Editor and are
therefore read-only from within the RAW_COM function block. Alarm
processing is also included in the block functionality but is not shown
in the figure.

RAW_COM Function Block Fields
Refer to the LIN Blocks Reference Manual, HA082375U003 for full
details.

Dbase, Block, Type. See LIN Blocks Reference Manual
HA082375U003 for details of these ‘header’ fields.

ActName. The name (8-characters max) given to any structured
Text (ST) Action created for the block as defined in FileName.STO
(specified below). The file holds the compiled structured text. Refer to
"Creating a Structured Text (ST) Action" on page 23.
Raw Comms User Guide

RAW_COM Function Block Fields 13
FileName. Specifies the file name (8-characters max) containing the
Structured Text (ST) Action specified by the ActName parameter
above. Refer to "Creating a Structured Text (ST) Action" on page 23.

Tx_Value. This is the buffer used to hold the character sequence to
be transmitted. The buffer can contain up to 1020 characters.

Tx_State. This parameter indicates the current state of the
transmitter. Values are OK, PENDING, ERROR and WRITE.
Transmission can be initiated by setting this parameter to WRITE.

Tx_Trig. This is provided to allow control of the Raw Comms block
by wiring. Setting this parameter to TRUE initiates transmission.

Options. Bitfield, setting communications options. All Options
default to FALSE.

• AltTerm. When TRUE this allows Rx_Term below to be treated
as a set of alternative single termination bytes any of which
identifies the end of a line of input. When FALSE, Rx_Term is
treated as a sequence of bytes.

• FlshOnTx. When TRUE, the receive buffer is always flushed
immediately prior to any transmission.

• DropRefl. Inhibit character reflection if during transmission
from the LIN device's serial port, characters are reflected back into
it, for example, 3-wire cabling. When TRUE for all characters
transmitted, an equal amount of received characters are ignored.

Note: No check is performed to ensure that the ignored characters
match the transmitted characters.

• SlaveTx. This field is for future use. It is intended to facilitate
tri-stating of the serial port transmitter for multi-drop slave
applications when set TRUE. Current supported hardware always
supports tri-stating mode regardless of setting this field to TRUE
or FALSE.

• Rx_Del. When TRUE, this enables the automatic processing of
delete characters in the input stream, that is, the removal of the
delete character itself plus the preceding character (assuming the
latter has not already been processed and reached the Rx_Value
buffer). The byte value to be interpreted as the delete character is
defined by the Rx_Del field below. If Options.Echo is also set, then
the delete character is not echoed, instead the optional sequence
defined by the Rx_DelEc field below is substituted on the condition
that a character was actually deleted.

• Echo. When TRUE, all received data (excluding loopback) is
retransmitted, used for example with a dumb terminal.

Note: The echoed data may be conditioned by the Rx_DelEc
parameter below.

• LoopBack. When TRUE, all transmitted data (excluding echo)
appears as input. Used for test purposes only.
Raw Comms User Guide

14  Chapter 2 RAW_COM Function Block
• TxMute. When TRUE, this inhibits transmission of all data
(including echo), but has no other effect, that is, the internal
transmit processing continues to function as if the data has been
transmitted.

• RxMute. When TRUE, discards incoming data (does NOT
discard loopback data).

Device. This identifies the Comms port to which the block refers.
For a T2550 PAC it is always RAW1. For Eycon 10/20 Visual
Supervisor it may be RAW1 or RAW2, as there are 2 serial ports
available.

Baud. The Tx/Rx baud rate (independent baud rates cannot be set
for Tx and Rx). The value of this read-only field is configured using the
Instrument Options Editor, see "Instrument Options Editor" on
page 17. Supported baud rates are 1200, 2400, 4800, 9600, 19200 and
38400.

Parity. The value of this read only field is configured using the
Instrument Options Editor, see "Instrument Options Editor" on
page 17. Supported values are NONE, ODD and EVEN.

DataBits. The value of this read only field is configured using the
Instrument Options Editor, see "Instrument Options Editor" on
page 17. It sets the number of bits per character for both receive and
transmit. If this is set less than 8 then the most significant (8 -
DataBits) bits is ignored when sending and forced to zero when
receiving. The number of bits per character supported in this field are
5, 6, 7 or 8.

Note: Current hardware does not support 5 or 6 Data Bits.

StopBits. The value of this read only field is configured using the
Instrument Options Editor, see "Instrument Options Editor" on
page 17. It sets the number of stop bits expected by the receiver and
sent by the transmitter. The number of stop bits supported are 1 or 2.

Alarms.

• Software. Asserted, if a sumcheck error in block’s RAM data
occurs or caching failure.

• NoAction. The Structured text (ST)) Action as defined in
ActName above or Filename.STO cannot be found.

• BadActn. Set if an ST evaluation error occurs at runtime.

• BadDev. The configured device is invalid, e.g. Requires
configuration using the Instrument Options Editor. For Visual
Supervisor only, can also mean a Raw Comms licensing failure.

• Device. A low-level communication device failure, Parity error,
for example. The status field provides details of the failure.

• UserAlm1. Controlled from structured text.

• UserAlm2. Controlled from structured text.

• UserAlm3. Controlled from structured text.
Raw Comms User Guide

RAW_COM Function Block Fields 15
• UserAlm4. Controlled from structured text.

• Combined. True if any alarm is active. It adopts the same status
message and priority number as the block's highest priority active
alarm.

Status. Status bits indicate the following error conditions. 0 = no
error has occurred.

• RxChLost. An internal receive buffer has overflowed causing
characters to be lost. This may also be caused by very heavily
loaded applications and/or large comms packet sizes, especially if
above 512 bytes.)

• RxParity. A parity error was detected on a received character.

• RxOver. An overrun error was detected on a received character.

• RxFrame. A framing error was detected on a received character.

• RxBreak. A break condition has been detected on the receive
line (not supported on current hardware).

• RxFrcErr. Rx_State below has been set to ERROR to force an
error.

• TxChLost. An attempt has been made to send a new message
before the last transmission has completed.

• TxFrcErr. Tx_State above has been set to ERROR to force an
error.

Rx_Value. This is the character buffer used to hold the character
sequence received from the serial port. The buffer can contain up to
1020 characters. It is volatile.

Rx_State. This parameter indicates the current state of the
receiver. Values are OK, PENDING, ERROR, READ and FLUSH.
Reception can be initiated by setting this parameter to READ. Setting
it to FLUSH clears any characters that have been received and are
waiting to be copied into the Rx_Value buffer. Characters already in
the Rx_Value buffer are not affected.

Rx_Trig. This is provided to allow control of the Raw Comms block
by wiring. Setting this parameter TRUE initiates reception.

Rx_Max. This specifies the maximum number of characters held in
the internal receive buffer before being passed on to the block's
Rx_Value buffer. The value should be in the range 1-1020. 1020 is the
maximum length of the Rx_Value message.

Note: Characters are passed to the Rx_Value buffer either on the
maximum number of characters as defined in Rx_Max being reached or
a termination sequence of characters has been received as defined in
Rx_Term.
Raw Comms User Guide

16  Chapter 2 RAW_COM Function Block
Rx_Term. This specifies a termination sequence of characters that
is used to identify the end of a line of input. If Rx_Term is left blank
the input is read from an internal receive buffer into the Rx_Value
buffer until Rx_Max characters have been received. If
Options.AltTerm is set, then these characters are treated as
alternatives rather than a sequence.

Rx_TermN. If Rx_Term is not blank, this specifies an additional
number of characters to be read after the termination sequence has
been received. This is intended to simplify receiving a message which
for example has a terminating sequence followed by a CRC or BCC.
The limits for this field are 0 - 1020.

Rx_Del. Specifies an optional delete character, to be applied to the
incoming character stream if Options.Rx_Del is set. This would
typically be used when communicating with a terminal of some kind.

Rx_DelEc. If Options.Echo and Options.Rx_Del are both set, this
specifies the string to be transmitted whenever an actual deletion
takes place as a result of the character Rx_Del being received. This is
typically "$08$20$08", that is, back-space, space, back-space.

Note: If a character is not available for deletion, then the defined
string in Rx_DelEc is not transmitted.

Function Block Variables
General Purpose Variables accessed by the associated Raw Comms
structured text and/or from external SFCs. They can be used as
workspace, to hold results and to accept input values.

Buffer1 to Buffer4. These provide access to four character buffers
which can be used as workspace by the associated Raw Comms
structured text or from an external SFC. Each buffer can contain up to
256 characters.

Byte1 to Byte4. Four bitfields, each of which can be treated as an
8-bit integer or 8 separate Booleans.

Word1 to Word4. Four bitfields, each of which can be treated as a
16-bit integer or 16 separate Booleans.

I1 to I4. Four 32-bit signed integer variables.

DwnTmr1 to DwnTmr4. Four down-timers which indicate seconds
as floating point. When non-zero, they count down automatically
(updating at every block update) until they reach zero. They can be
written to and read at any time.

A1 to A12. Twelve floating point variables.
Raw Comms User Guide

Instrument Options Editor 17
Instrument Options Editor
The serial communications port is configured using the Instrument
Options Editor as previously mentioned in this document (sometimes
referred to as the ‘CNF’ editor). It has an associated file that is created
when used and contains the configuration details which can then be
edited as appropriate. This file is known as ‘_system.opt’.

Referring to the following figure, right click on the appropriate
Instrument as circled below (e.g. T2550_14) and select the Properties
item and select the Instrument Options tab. Locate the Serial icon
and select it to edit the serial ports as required.

It is also possible to simply double click on the ‘_system.opt’ file located
in the Instrument folder to open it. It also shows the same dialogue as
shown in figure 2.3.

If the instrument is currently connected via ‘Eurotherm Network’, the
current option settings can be uploaded by selecting the Upload
current Option Settings button. Once edited the new settings can be
applied by selecting the Apply button.
Raw Comms User Guide

18  Chapter 2 RAW_COM Function Block
Byte Sequence Format
The Byte Sequence (ByteSeq) format is covered in greater depth in the
LINtools on-line help by pressing the F1 key at any time when using
LINtools. The RAW_COM block uses this format for four fields as
follows:

• Tx_Value

• Rx_Value

• Rx_DelEc

• Buffer1 to Buffer4

The function of these fields are described in "RAW_COM Function
Block Fields" on page 12, but in general terms they cater for long
strings and are implemented using Structured Text (ST) either in an
SFC or an Action associated with the RAW_COM block, see section
3.5.

Note: Byte Sequence fields cannot be wired.

Structured Text (ST) and Raw Comms
This document does not cover the use or implementation of ST as it is
covered in detail in the LINtools on-line help facility and should be
used to aid in ST applications, specifically the sections as follows:

• Constants in ST

• String Constants

• Wide String and Byte Sequence Conversion

• Operators and Functions in ST

• Lists the Operators and Functions and where relevant shows
worked examples by clicking the hyperlinks
Raw Comms User Guide

19
Chapter 3

LINtools Applications

This chapter describes the implementation of Raw Communications
using the LINtools configurator. It assumes that the user is familiar
with LINtools menus and LIN database configuration as described in
the LINtools Engineering Studio User Guide, HA263001 U055.
Chapter 2 of this user guide provides reference information associated
with the RAW_COM function block.

About LINtools
Ensure that the version of LINtools being used supports Raw Comms.
This is achieved by selecting About LINtools... in the LINtools Help
menu and with reference to "Supported Products" on page 7. The
following figure shows the About LINtools dialogue box stating at
least this version of LINtools being used.
Raw Comms User Guide

20  Chapter 3 LINtools Applications
LINtools Palette
The RAW_COM function block is located in the Comms item located in
the Palette as shown in the following figure. Ensure that the
Instrument Version supporting Raw Comms has been selected with
reference to "Supported Products" on page 7.
Raw Comms User Guide

LINtools Palette 21
RAW_COM Function Block extended fields
The Tx_Value parameter is designed to handle up to 1020 characters
which consequently is larger than the standard field parameters
allows. With reference to the following figure, when editing ‘Tx_Value’
and clicking within the field an icon appears at the right hand side as
shown below. Clicking on the icon opens the Tx_Value Pop-up window
to allow entry of large strings as shown below.
Raw Comms User Guide

22  Chapter 3 LINtools Applications
Online Connection
When connected on-line to the RAW_COM block, for large fields (for
example, Tx_Value), a dual pane window as activated in "RAW_COM
Function Block extended fields" on page 21 is available to enter and
view data as shown in the following figure. All other fields operate as
expected in the on-line connection mode, and live data is shown in the
column adjacent to each field.

Online Reconfiguration
On instruments that support on-line reconfiguration (the T2550 PAC,
for example), it is possible to create, remove or replace a RAW_COM
block as required. However, this will only be successful if the serial
port protocol has already been configured to Raw, via the Instrument
Options Editor. For further details, refer to "Instrument Options
Editor" on page 17.

If an associated action file has been specified for the created or edited
block, when in TRY mode this file is read and reloaded. This method
can therefore be used to achieve an associated Action reload, which is
not possible while under normal running conditions.

For more information on associated Action files refer to"Creating a
Structured Text (ST) Action" on page 23.
Raw Comms User Guide

Creating a Structured Text (ST) Action 23
Creating a Structured Text (ST) Action
When developing a protocol using the RAW-COM block, a Structured
Text (ST) Action can be used to implement the associated protocol
structures. With reference to "RAW_COM Function Block Fields" on
page 12, the two fields that are configured with the associated
ACTION itself and the filename containing the ACTION are ActName
and FileName respectively. Assuming that a RAW-COM block is
loaded in the function block database, the procedure to create an
ACTION is described as follows and is based on Example 1 as
described in "Example 1: Simple Terminal Application" on page 34.

To create a Structured Text Action

1 Ensure that a relevant version of LINtools supporting Raw
Communications is installed, refer to "Supported Products" on
page 7.

2 Click on the Add button located in the Contents pane. With
reference to the following figure, the Add file to Configuration
pop-up window is now available. Select the radio button, Make a
new file to add to the configuration, and then select New LIN
Actions followed by clicking the OK button.

3 A new pop-up window appears prompting for a file name. Enter a
meaningful file name limited to 8-characters maximum (termappa
in the example below) and click OK. The new file is added to the
contents pane structure as shown in the following figure.
Raw Comms User Guide

24  Chapter 3 LINtools Applications
4 Open the file name by double clicking on it which in turn creates a
new untitled (ACTION) as shown in the following figure.

5 Delete the untitled (ACTION) item as shown in the above figure by
right-clicking on it and select Delete.

6 If the Palette is not shown, select the Palette item from the View
menu to activate it.

7 Select the Categorised tab in the Palette and from the drop down
Type menu, select the appropriate instrument, T2550 PAC, for
example. Ensure that the appropriate version is also selected in
the Version drop down menu to support Raw Comms as shown in
"Supported Products" on page 7.

8 Once step 7 is completed the Palette contains the Function Block
Library headings. Expand the Comms heading and double-click
the RAW_COM item which opens a Make Action (RAW_COM)
pop-up window as shown in the following figure.
Raw Comms User Guide

Upgrading an Existing Database 25
9 Enter a meaningful Action name limited to 8-characters maximum
(TermAppA in the example below), then ensure that the
Structured Text radio button is highlighted and finally click OK.
The Action editor is now available for creation of the Action using
ST as appropriate. Save the file before closing the editor. A
working example of ST Action code as used for Example 1 in
"Example 1: Simple Terminal Application" on page 34, is shown in
the following figure.

Upgrading an Existing Database
If a database was created for an instrument pre-Raw Comms and it is
now required to implement Raw Comms in that database, an upgrade
procedure must be adhered to. This requires the existing database to
be loaded into the relevant version of LINtools, the database header
block deleted and replaced with the relevant version header block,
save, close and re-open the database. This procedure uses an example
based on a T2550 PAC described as follows:

To upgrade an existing database

1 Ensure that a relevant version of LINtools supporting Raw Comms
is installed. For details, refer to "Supported Products" on page 7.

FileName
ActName
Raw Comms User Guide

26  Chapter 3 LINtools Applications
2 Locate the Instrument folder which contains the database(.DBF) to
be upgraded. It is normally be found in the C:\EuroPS\<Project
name>\Networks\<Network name>\<Instrument name> folder.
An example, using an instrument name of T2550_14 and a
database name of 2550_14.DBF is shown in the following figure.

3 Referring to the above figure, right-click on the instrument folder
and select Properties, which opens the LIN Instrument Properties
dialog box. Select the LIN Instrument tab and from the pick list in
the Instrument Version drop down box, select v7.0 or greater
(v5.0 or greater for Visual Supervisor) and click OK.

4 Open the appropriate .DBF file contained in the instrument folder
by double-clicking it, which automatically opens LINtools. It is
expected that the associated .GRF file is available which facilitates
a graphical representation of the database. If not, select the Create
FBD Layout item from the LINtools View menu.

5 Locate and then open the database Header Block by
double-clicking within it. The Header Block details are now shown
at the bottom of the LINtools window.

Note: Make a record of all connections, comments and parameter
settings, e.g. TagName, LIN Name, BrownOut, ColdStrt, etc. Comments
and Connections can be found in the relevant tabs.

6 Ensure that the Header Block is still selected, denoted by a blue
highlight fringed with diagonal lines, press the Delete key to
delete the header block.

Instrument
Folder

Database
File (DBF)
Raw Comms User Guide

Upgrading an Existing Database 27
7 Referring to the following figure, if not already shown, open the
Palette by selecting the Palette item from the LINtools View
menu. Select the appropriate instrument type from the drop down
box, then from the Instrument Version drop down box select v7.0
or greater (v5.0 or greater for Visual Supervisor). From the Palette
library, select and drag the appropriate Header Block and place
where required. Once placed, a LINtools information box appears,
reminding the user to save, close and re-open the database. Click
OK on the information box to close it. Using the information as
recorded in step 5, enter the TagName and LIN Name in the new
Header Block. Then save, close and re-open the database.

Note: The target Instrument Firmware and Palette version must be
matched as close as possible.
Raw Comms User Guide

28  Chapter 3 LINtools Applications
8 Before fully reconstructing the Header Block, it is recommended to
check that the correct version has been applied in the Header
Block. Referring to the following figure, open the Palette and
ensure that the Version number shown is v7.0 or greater (v5.0 or
greater for Visual Supervisor). Open the Header Block by double
clicking on it, ensuring that version 7/0 or greater (version 5/0 or
greater for Visual Supervisor) is shown in the field adjacent to the
Alarms field. Once satisfied that the correct version has been
applied, the Header Block can now be fully reconstructed using the
information as recorded in step 5.

9 Ensuring that the target instrument is at the appropriate
firmware version by referring to"Supported Products" on page 7,
the database can now be edited to include a RAW_COM block and
downloaded using the Build and Download buttons located in the
LINtools contents pane.

Header Block version
Raw Comms User Guide

Error Messages 29
Error Messages
When downloading files created in LINtools that support Raw Comms
and the firmware version of the target instrument is pre-Raw Comms
(refer to "Supported Products" on page 7) typical error messages are
given as shown in the following figure.
Raw Comms User Guide

30  Chapter 3 LINtools Applications
Raw Comms User Guide

31
Chapter 4

Configuration and Examples

This chapter describes the setup decisions that need to be made prior
to implementing a Raw Comms configuration (whether to use just an
associated Action or just an associated SFC or an associated SFC
interacting with an associated Action as discussed below). A decision
on whether just an associated Action can be used on its own without
an associated SFC is determined by the required protocol complexity
whilst considering that the maximum size of an associated Action file
object code is 1000 bytes.

This chapter also provides worked examples to give an understanding
of achieving protocols using an associated Action. Example 3
demonstrates the limit of what can be achieved using just an
associated Action.

Raw Comms Configuration
Raw Comms is configured in two or three parts, determined by the
complexity of the required protocol as discussed in the following
sub-sections. The RAW_COM block allows for execution of an
associated Action which typically would be used for non-complex
protocols. For complex protocols an Action can also be used for common
routine tasks in association with an SFC. For further information to
aid configuration please refer to the LIN Blocks Reference Manual,
HA082375 U003. For reference to Simple Variable Application Blocks
to assist in Raw Comms processing also refer to Chapter 9 of the
Application & Control Modules Manual HA084012 U003.
Raw Comms User Guide

32  Chapter 4 Configuration and Examples
Configuration of the RAW_COM function block
fields

The RAW_COM block fields are configured prior to any associated
Action or SFC creation. Refer to the chapter, "RAW_COM Function
Block" on page 11 for field descriptions and a functional diagram. Also
refer to the LIN Blocks Reference Manual, HA082375 U003.

Note: On Instruments where multiple user tasks are supported (for
example, the T2550 PAC) the RAW_COM block can be allocated to run
on any of these tasks.

Associated Structured Text Action
For non-complex protocol applications an associated Structured Text
(ST) Action can be used to facilitate the required protocol processing.
This requires that two fields are configured in the RAW_COM block.
These fields are configured with the associated Action itself and the
Filename containing the Action, namely ActName and FileName
respectively. The procedure to create an ACTION is described in
"Creating a Structured Text (ST) Action" on page 23. To force the
RAW_COM block to load a new associated Action, refer to "Online
Reconfiguration" on page 22.

Associated SFC
For more complex protocols an SFC is required to manage the overall
protocol state processing requirements. However in this case it may be
possible to process common routine tasks using an associated Action
which interacts with an SFC. The SFC manages the overall protocol
state processing tasks.

An associated SFC interacting with the RAW_COM block is considered
just like any other SFC and the process for creating and implementing
the SFC is no different.
Raw Comms User Guide

Raw Comms Configuration 33
Further Information and Help
The LINtools on-line help provides information on creation of SFCs,
Structured Text (ST), Actions and general help. Specifically, for
further information relating to ST usage available to assist in Raw
Comms processing, it is strongly recommended to see the following
help topics, ’Operators and functions in ST’ and ‘Constants in ST’ as
shown in following two figures.

DATEANDTIMENOW
function used in
example 1 below
Raw Comms User Guide

34  Chapter 4 Configuration and Examples
Examples
The following sections provide examples of the configuration of Raw
Comms.

Example 1: Simple Terminal Application
The first example is an extremely basic, but is a complete application
communicating with a dumb terminal such as HyperTerminal on
Windows®. Its function is simply to print out the current date or time
when the 'd' or 't' key is pressed respectively.

Referring to the following figure, the database contains two function
blocks as follows:

• An appropriate header block for the target instrument, e.g. a
TACTICIAN block for a T2550 PAC, or an 'Eycon-20' block for a
Visual Supervisor.

• A RAW_COM block. All fields should be left with their default
values, except that 'ActName' and 'FileName' are both set to
'TermAppA'. Refer to section 2.2 for field descriptions.

Associated Action
There is a single action file, TermAppA.STX, containing a single
action, also named TermAppA. For details of how to create this, refer
to "Creating a Structured Text (ST) Action" on page 23. The contents
of the action are as follows:

If I1 = 0 Then

 (* On start-up, send initial message *)

Note: Associated Action File.
Refer to "Creating a
Structured Text (ST) Action"
on page 23 for details.

Note: Tx Value showing date
where ‘$N’ = ‘Carriage
Return’-’Line Feed’ (Newline)

Note: Rx Value showing ‘d’
Raw Comms User Guide

Examples 35
 Tx_Value := "Press 'd' for date or 't' for time$N";

 Tx_State := 'WRITE'; (* Send it *)

 Rx_State := 'READ'; (* Get 1st input character *)

 I1 := 1; (* Only do this once! *)

ElsIf Rx_State = 'OK' OR Rx_State = 'ERROR' Then

 If Rx_State = 'OK' Then

 If Rx_Value = 'd' Then

 Buffer1 := LEFT(DATEANDTIMENOW(0),10);

 ElsIf Rx_Value = 't' Then

 Buffer1 := RIGHT(DATEANDTIMENOW(0),8);

 Else

 Buffer1 := '????';

 End_If;

 Else

 Buffer1 := '!!!! ERROR !!!!';

 End_If;

 Tx_Value := CONCAT(Buffer1, '$N'); (* Add newline *)

 Tx_State := 'WRITE';

 Rx_State := 'READ';

End_If;

Before attempting to run this application, the first (or only) serial port
must have been set up via the Instrument Options Editor. Refer to
"Instrument Options Editor" on page 17 for further details. The comms
settings (baud, parity, etc) must match with the terminal being used.
If the terminal is not RS-485, then a suitable converter (KD485
converting to RS-232, for example) is also required. Also ensure that
the target instrument being used is licensed for Raw Comms (licensing
is the same as for Modbus Master).

Testing
With reference to the following figure, on start-up, the following
message should appear on the terminal:

Press 'd' for date or 't' for time

If the 'd' key is pressed then a date, such as

22/01/2011
Raw Comms User Guide

36  Chapter 4 Configuration and Examples
should be displayed. Similarly for the 't' key a time, such as

10:53:40

should appear. Any other character causes '????' to be displayed.

Example 2: ASCII Modbus
This is a simple example used to communicate with an instrument via
the ASCII variant of the Modbus protocol. Its function is to repeatedly
read the PV value in the instrument which is then written to the A1
field of the RAW_COM block. The fields I1-I3 are used to count
transmit errors, receive errors and timeouts respectively. I4 counts
message length errors while Word1 counts checksum errors. Refer to
"RAW_COM Function Block Fields" on page 12 for field descriptions.

The RAW_COM block is set up with the following non-default values:

• Tx_Value = ':010347000001B4$N' – this is a request to read PV.

• Rx_Max = 16 – this is longer than the expected response

• Rx_Term = '$N' – this is the expected termination sequence
(CR-LF) of the response.

• Options.FlshOnTx = TRUE – this ensures that any erroneous data
is always cleared before each transaction.

Associated Action
For details of how to create an Action, refer to "Creating a Structured
Text (ST) Action" on page 23. Only a very limited check on the
response validity has been performed in the example ST code below.
The contents of the action are as follows:

If (Tx_State = 'OK') AND (Rx_State = 'OK') Then

 If (Byte1 = 1 (* indicating successful read *)) Then

 (* Check response is correct length *)

 If (LEN(Rx_Value) = 15) Then

 (* Verify checksum *)

 Byte4 := 0;

 For Byte3:= 2 To 10 By 2 Do

 Byte4 := Byte4 - SCAN('X', MID(Rx_Value, 2, Byte3));
Raw Comms User Guide

Examples 37
 End_For;

 If Byte4 = SCAN('X', MID(Rx_Value, 2, 12)) Then

 (* Value is expressed in hex, in units of tenths *)

 A1:=SCAN('X',MID(Rx_Value,4,8))/10;

 Else

 Word1 := Word1 + 1; (* Word1 counts checksum errors *)

 End_If;

 Else

 I4 := I4 + 1; (* I4 counts length errors *)

 End_If;

 End_If;

 (* Do next read immediately *)

 Rx_State := 'READ';

 Tx_State := 'WRITE';

 Byte1 := 1; (* Initialise to 'success' *)

 DwnTmr1 := 5; (* Initialise 5 sec timeout *)

ElsIf (Tx_State = 'ERROR') Then

 Byte1 := 0;

 I1 := I1 + 1; (* I1 counts Tx errors *)

 Tx_State := 'OK';

ElsIf (Rx_State = 'ERROR') Then

 Byte1 := 0;

 I2 := I2 + 1; (* I2 counts Rx errors *)

 Rx_State := 'OK';

ElsIf (DwnTmr1 = 0) Then (* Timeout *)

 Byte1 := 0;

 Tx_State := 'OK';

 Rx_State := 'OK';

 I3 := I3 + 1; (* I3 counts timeouts *)

End_If;

Example 3: Bisync Protocol
The following example has been used to communicate with a legacy
Eurotherm S6360 process controller via the EI bisync (binary)
protocol. The SP value is written from the field A1, and the OP and ER
values are read into the A2 and A3 fields respectively. These three
transactions are cycled through using the Byte fields to keep track of
which is in progress.
Raw Comms User Guide

38  Chapter 4 Configuration and Examples
Specific points worth noting for this example:

• This is a binary protocol, hence the frequent appearance of base 16
numbers (for example,16#7F), and '$' escape sequences in literal
strings.

• The data encoding is quite intricate, requiring the use of shift and
replace functions.

• When reading, Rx_TermN is set to 1 as the protocol expects one
extra byte (the checksum) following the terminating ETX.

• When writing SP, the BCC function is used to calculate the
required checksum.

• The instrument number has been hard coded as 0 in this example.

Note: The object code maximum size of an associated Action is 1000
bytes.

This example represents about the extreme of what is practically
achievable using only an associated action file (especially as it is close
to the 1000 byte object code limit). For anything more complicated, an
SFC would be a more manageable choice.

Associated Action
For details of how to create an Action, refer to "Creating a Structured
Text (ST) Action" on page 23. The contents of the action are as follows:

If Rx_State = 'OK' OR Rx_State = 'ERROR' Then

 If Rx_State = 'ERROR' Then

 Byte4.Bit2 := 1; (* Error flag *)

 Else

 Byte4.Bit2 := 0;

 If Byte3 = 2 Then

 (* Decode OP, first checking response looks valid *)

 If EQUAL(LEFT(Rx_Value, 2), '$02$89') Then

 Word2 := SHL16(EXTRACT_UINT8(Rx_Value,3), 14) +

 SHL16(EXTRACT_UINT8(Rx_Value,4) AND 16#7F, 7) +

 (EXTRACT_UINT8(Rx_Value,5) AND 16#7F);

 A2 := Word2 / 100.0;

 End_If;

 ElsIf Byte3 = 3 Then

 (* Decode ER, first checking response looks valid *)

 If EQUAL(LEFT(Rx_Value, 2), '02A3') Then

 Word3 := SHL16(EXTRACT_UINT8(Rx_Value,3), 14) +
Raw Comms User Guide

Examples 39
 SHL16(EXTRACT_UINT8(Rx_Value,4) AND 16#7F, 7) +

 (EXTRACT_UINT8(Rx_Value,5) AND 16#7F);

 A3 := Word3 / 10.0;

 End_If;

 End_If;

 End_If;

Byte3 := Byte3 + 1; (* Move on to next request *)

 If Byte3 > 3 Then

 Byte3 := 1;

 End_If;

If Byte3 = 1 Then

 (* Set SP *)

 Buffer1 := '$04$80$80$02$92$84$00$00$03$00';

 I1 := A1 * 10;

 Word1 := I1;

 Buffer1 := REPLACE_UINT8(Buffer1,6, 16#84 OR

SHR16(Word1,14));

 Buffer1 := REPLACE_UINT8(Buffer1,7, 16#80 OR SHR16(Word1,7)

);

 Buffer1 := REPLACE_UINT8(Buffer1,8, 16#80 OR Word1);

 Byte1 := BCC(MID(Buffer1,5,5),0,0);

 Tx_Value := REPLACE_UINT8(Buffer1,10,16#80 OR Byte1);

 Rx_Max := 1;

 ElsIf Byte3 = 2 Then

 (* Read OP *)

 Tx_Value := '$04$80$89$89$05';

 Rx_Max := 20;

 Rx_Term := '$03'; (* ETX *)

 Rx_TermN := 1; (* BCC *)

 Else

 (* Read ER *)

 Tx_Value := '$04$80$A3$A3$05';

 Rx_Max := 20;

 Rx_Term := '$03'; (* ETX *)

 Rx_TermN := 1; (* BCC *)

 End_If;
Raw Comms User Guide

40  Chapter 4 Configuration and Examples
 Rx_State := 'READ';

 Tx_State := 'WRITE';

 DwnTmr1 := 10;

ElsIf DwnTmr1 = 0 Then

 Rx_State := 'ERROR';

End_If;
Raw Comms User Guide

41
Index

A
A function block variable 16
about LINtools . 19
ActName function block field 12
Alarms function block field 14
AltTerm function block option. 13
application and control modules

BYTESEQ1020 . 9
BYTESEQ256S . 9
BYTESEQ48S . 9
WIDESTR128S . 9
WIDESTR24S . 9
WIDESTR510 . 9

B
BadActn function block alarm. 14
BadDev function block alarm 14
Baud function block field 14
Block function block field. 12
Buffer function block variable 16
Byte function block variable 16
byte sequence format 18

C
Combined function block alarm. 15
compatibility. 7
configuration of the RAW_COM function block
fields . 32

D
DataBits function block field 14
Dbase function block field 12
Device function block alarm 14
Device function block field 14

DropRefl function block option. 13
DwnTmr function block variable 16

E
Echo function block option 13
extended fields, LINtools 21

F
FileName function block field 13
FlshOnTx function block option 13
function block fields, RAW_COM. 12
function block variables,RAW_COM 16

I
I function block variable 16
Instrument Options Editor. 17

L
LIN. 6
LINtools

about . 19
extended fields . 21
online connection . 22
palette. 20

LoopBack function block option 13

N
NoAction function block alarm. 14

O
online connection, LINtools 22
Options function block field 13
overview of RAW_COM function block 11
Raw Comms User Guide

42Index
P
palette, LINtools. 20
Parity function block field 14
prerequisites. 5

R
Raw Comms

associated Action. 32
compatibility . 7
configuration . 31
configuring decisions. 31
examples

overview34
further information 33
SFC . 32
structured text. 18
typical usage . 6

RAW_COM
function block fields 12
function block variables 16
function block, overview 11
functional diagram 12

RAW_COM function block fields
ActName . 12
Alarms . 14
Alarms.BadActn . 14
Alarms.BadDev . 14
Alarms.Combined 15
Alarms.Device . 14
Alarms.NoAction . 14
Alarms.Software . 14
Alarms.UserAlm2 14
Alarms.UserAlm3 14
Alarms.UserAlm4 15
Alarm.UserAlm1 . 14
Baud. 14
Block . 12
DataBits. 14
Dbase . 12
Device. 14
FileName . 13
Options. 13
Options.AltTerm . 13
Options.DropRefl. 13
Options.Echo . 13
Options.FlshOnTx. 13
Options.LoopBack 13
Options.Rx_Del . 13
Options.RxMute . 14
Options.SlaveTx . 13
Options.TxMute . 14

Parity . 14
Rx_Del . 16
Rx_DelEc . 16
Rx_Max. 15
Rx_State . 15
Rx_Term . 16
Rx_TermN . 16
Rx_Trig . 15
Rx_Value . 15
Status . 15
Status.RxBreak . 15
Status.RxChLost . 15
Status.RxFrame. 15
Status.RxFrcErr. 15
Status.RxOver . 15
Status.RxParity . 15
Status.TxChLost . 15
Status.TxFrcErr. 15
StopBits . 14
Tx_State . 13
Tx_Trig . 13
Tx_Value . 13
Type . 12

RAW_COM function block variables
A . 16
Buffer . 16
Byte. 16
DwnTmr . 16
I. 16
overview . 16
Word . 16

related documents. 5
Rx_Del function block field. 16
Rx_Del function block option 13
Rx_DelEc function block field 16
Rx_Max function block field 15
Rx_Mute function block option. 14
Rx_State function block field 15
Rx_Term function block field 16
Rx_TermN function block field 16
Rx_Trig function block field 15
Rx_Value function block field. 15
RxBreak function block status 15
RxChLost function block status 15
RxFrame function block status 15
RxFrcErr function block status 15
RxOver function block status 15
RxParity function block status. 15

S
serial ports
Raw Comms User Guide

Index 43
configuration . 17
supported . 11

SlaveTx function block option 13
Software function block alarm. 14
Status function block field 15
StopBits function block field 14
structured text . 18

constants . 18
further information 33
operators and functions 18

supported products
Eycon™ 10/20 Visual Supervisor 7
LINtools . 7
Operations Server . 7
T2550 PAC. 7

T
T640 . 7
T800 . 7
T940X . 7

terms / terminology. 5
Tx_Mute function block option. 14
Tx_State function block field 13
Tx_Trig function block field 13
Tx_Value function block field. 13
TxChLost function block status 15
TxFrcErr function block status 15
Type function block field. 12
typical usage of Raw Comms 6

U
user knowledge assumptions 5
UserAlm1 function block alarm 14
UserAlm2 function block alarm 14
UserAlm3 function block alarm 14
UserAlm4 function block alarm 15

W
what is Raw Communications? 6
Word function block variable 16
Raw Comms User Guide

Rear Cover (Master)

Scan for local contents

Eurotherm Ltd
Faraday Close
Durrington
Worthing
West Sussex
BN13 3PL
Phone: +44 (0) 1903 268500
www.eurotherm.co.uk

Schneider Electric, Life Is On, Eurotherm, EurothermSuite, Wonderware, InTouch, eCAT, EFit, EPack, EPower,Eycon,
Eyris, Chessell, Mini8, nanodac, optivis, piccolo, and versadac are trademarks of Schneider Electric SE, its subsidiaries
and affiliated companies. All other trademarks are the property of their respective owners.

HA030511 Issue 5 (CN35714)

© 2017 Schneider Electric. All Rights Reserved.

http://www.eurotherm.co.uk

	Front Cover
	Contents
	Overview
	Prerequisites (User Knowledge Assumptions)
	Related Documents
	Terms

	What is Raw Communications?
	Example Applications

	Compatibility
	Supported Products

	Does my Existing Database Support Raw Comms?
	T2550 PAC Redundant Processors Support
	Application and Control Modules
	Raw Comms Licensing

	RAW_COM Function Block
	RAW_COM Functional Diagram
	RAW_COM Function Block Fields
	Function Block Variables

	Instrument Options Editor
	Byte Sequence Format
	Structured Text (ST) and Raw Comms

	LINtools Applications
	About LINtools
	LINtools Palette
	RAW_COM Function Block extended fields

	Online Connection
	Online Reconfiguration
	Creating a Structured Text (ST) Action
	Upgrading an Existing Database
	Error Messages

	Configuration and Examples
	Raw Comms Configuration
	Configuration of the RAW_COM function block fields
	Associated Structured Text Action
	Associated SFC
	Further Information and Help

	Examples
	Example 1: Simple Terminal Application
	Associated Action
	Testing
	Example 2: ASCII Modbus
	Associated Action
	Example 3: Bisync Protocol
	Associated Action

	Index
	Rear Cover

