Eurotherm

nanodac™ User Guide Addendum

nanodac™ recorder/controller Versions 2.3 and later

HA031164/1 Aug 2011

© 2011 Eurotherm Limited

All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior, written permission of Eurotherm Limited.

Eurotherm Limited pursues a policy of continuous development and product improvement. The specification in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document.

1 INTRODUCTION

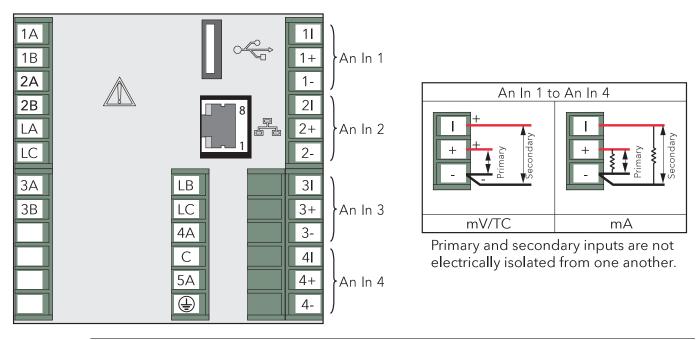
This document describes enhancements to the nanodac instrument, which have been introduced since issue three of the main manual was produced. These enhancements are described in the following sections:

- 2 Dual channel inputs.
- 3 Sensor break detection for mA inputs.
- 4 Errata corrections to and omissions from the main manual

References to 'the main manual' refer to issue 3 of the nanodac user guide HA030554.

2 DUAL CHANNEL INPUTS

This is a cost option, enabled on a channel-by-channel basis by means of entering the relevant password in the 'Feature' Pass' field in Instrument.Security menu. (Similar to 'Feature' Pass' described in section 4.1.6 (Security menu) of the main manual.)


For each enabled channel, a pair of mV or mA inputs can be terminated at the analogue input terminals (An In1 to An In 4 in figure 2.2 in the main manual), Thermocouple inputs are also available - please contact the supplier for advice.

Instrument.Security			
Engineer Pass			
Supervisor Pass			
Operator Pass			
Feature Pass	12345		
Feature2 Pass	23456		
Feature 3 Pass	34567		
Comms Pass	Enabled		

For each enabled channel, the inputs are called 'primary' and 'secondary', terminated as shown in 'Wiring', below. The primary inputs 1 to 4 are assigned to channels 1 to 4, as normal. Each secondary input must be soft wired to a maths channel configured as Operation = 'Copy' if it is to be recorded/displayed/alarmed etc. Soft wiring is described in Section 7 of the main manual (User wiring) and maths channels are described in section 4.5.1 (Maths channel configuration) in the same document.

2.1 WIRING

The figure below gives wiring details for the four analogue input channels. See figure 2.2 of the main manual for wiring details for other inputs.

Note: For maximum accuracy, it is recommended that separate returns are used to the negative terminals.

2.2 CHANNEL (MAIN) CONFIGURATION

Figure 2.2, below shows a typical channel configuration page for the case where channel type is set to 'Dual mA;. Dual mV and Dual T/C (if fitted) are similar. See section 4.4.1 of the main manual for further details.

Channel.1.Main			
Descriptor	Channel 1		
Туре	Dual mA		
PV	2.4 mA		
Status	Ok		
PV2	2.7mA		
Status2	Ok		
Resolution	1		
Units	%		
Input Low	4.0		
Input High	20.0		
Shunt			
Lin Type	Linear		
Scale Low	0.0		
Scale High	100		
Scale Low2	0.0		
Scale High2			
Offset	0.000		
Offset2	2.56		
Filter	1.6 sec		
Sensor Break Type	Break Low		
Fault Response	Drive High		
Sensor Break Val	0%		
Measured Value	4.5		
Measured Value 2	12.3		
Internal CJ Temp	29.1		

Figure 2.2 Typical channel configuration page.

2.2.1 Channel Main parameters

Descriptor	Allows a (20 character max.) descriptor to be entered for the channel. Some thought should be given to ensure that the descriptor is meaningful because in some display screens it is truncated. For example, 'Furnace 1 area 1' and 'Furnace 1 area 2' might both appear as 'Furnace 1 a' and thus be indistinguishable from one another, except in background colour.
PV	Read only. Displays the current value of the primary input.
Status	Read only. Shows the primary input status as one of: 'Good', 'Channel Off', 'Over range', 'Under range', 'HW error', 'Ranging', 'HW (capability) exceeded'.

2.2.1 CHANNEL MAIN PARAMETERS (Cont.)

PV2	Read only. Displays the current value of the secondary input.
Status2	Read only. Shows the secondary input status as one of: 'Good', 'Channel Off', 'Over range', 'Under range', 'HW error', 'Ranging', 'HW (capability) exceeded'.
IP Adjust State	Appears only if the relevant primary channel has been adjusted using the 'Input Adjust' procedure described in section 4.1.8 of the main manual and section 2.3, below.
IP Adjust State2	As 'IP Adjust State', above but for secondary channels.
Resolution	Allows the number of decimal places to be defined for the channel. Valid entries are zero to nine.
Units	Allows a units string of up to five characters to be entered.
Туре	Allows the user to select an input type for the channel. Available selections are: 'Off', 'Thermocouple', 'mV', 'V', 'mA', 'RTD', 'Digital', 'Test' or 'Ohms', Dual mV, Dual mA, Dual T/C (if enabled).
Test signal	Appears only if 'Test' is selected as 'Type'. Allows either a sinusoidal or a triangular waveform to be selected at one of a number of cycle times between 40 seconds and five hours.
Input Low*	For Type = mV, Dual mV, V, mA, Dual mA or Ohms, the lowest value of the applied sig- nal in electrical units.
Input High*	As 'Input Low', but the highest value of the applied signal in electrical units.
Shunt value	For mA and Dual mA input types only, this allows the value of the shunt resistor (in Ohms) to be entered. The recorder does not validate this value - it is up to the user to ensure that the value entered here matches that of the shunt resistor(s) fitted. For Dual mA input type, both primary and secondary inputs must have independent shunts each of the same value.
Lin type	Linear, Square root, x3/2, x5/2, User Lin. Thermocouple types (alphabetical order): B, C, D, E, G2, J, K, L, N, R, S, T, U, NiMo/ NiCo, Platinel, Ni/MiMo, Pt20%Rh/Pt40%Rh. User 1 to User 4 Resistance thermometer types: Cu10, Pt100, Pt100A, JPT100, Ni100, Ni120, Cu53. See Appendix A of the main manual for input ranges, accuracies etc. associated with the above thermocouple and RTD types. See section 4.9 of the manual for details of user linearisations.
Range Low*	For thermocouples, RTDs, User linearisations and retransmitted signals only, the lowest value of the required linearisation range.
Range High*	For thermocouples, RTDs, User linearisations and retransmitted signals only, the highest value of the required linearisation range.
Range Units	For thermocouples only and RTDs, Select °C, °F or K.
Scale Low/High	Maps the process value of the primary input to (Scale High - Scale Low). For example, an input of 4 to 20mA may be scaled as 0 to 100% by setting Scale low to 0 and Scale High to 100.
Scale Low2/High2	As 'Scale Low/High but for the secondary input (PV2).
Offset	Allows a fixed value to be added to or subtracted from the value of the primary process variable.
Offset2	The nature of the secondary input results in an offset being introduced into the process variable value. For mA inputs this offset is removed automatically, without user intervention. For mV inputs the offset depends on the value of the voltage source impedance and is equal to $199.9\mu V/\Omega$. This offset can be compensated for eithrer by using this Offset2 parameter, or by carrying out the 'Input Adjust' procedure.** For Dual T/C inputs, it is recommended that the 'Input Adjust' procedure** be used in-
	stead of Offset2 as the use of Offset2 results in an offset which is non-linear over the thermocouple range.

* See section 4.9 of the main manual for details of the configuration of Range High/Low and Input High/Low when 'Type' = User 1 to User 4.
** The 'Input Adjust' procedure is described in section 4.1.8 of the main manual and section 2.3,

below.

2.2.1 CHANNEL MAIN (Cont.)

Input filter Damping can be used to filter out noise from slowly changing signals so that the underlying trend can be seen more clearly. Valid input values are between 0 and 60 seconds.

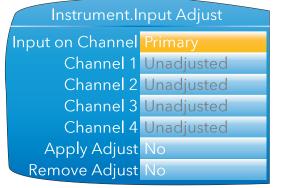
Note: Applying a filter to an input channel can affect the operation of any Rate-of-change alarms configured to act on that channel.

CJC Type	For thermocouple input types only, this allows the user to select 'None', 'Internal', 'Ex- ternal' or 'Remote 1' to 'Remote 4'. For Dual T/C inputs, both primary and secondary inputs use the same cold junction. None: No cold junction compensation applied. 'Internal' uses the recorder's internal cold junction temperature measurement. 'External' means that the cold junction is to be maintained by the user, at a fixed, known temperature. This temperature is entered in the 'External CJ Temp' field which appears when 'External' is selected. Remote 1 (2) (3) (4) means that the cold junction temperature is being measured by in- put channel 1 (2) (3) (4) respectively. (This must be a different channel from that current- ly being configured).
Ext. CJ Temp	Appears only if CJC type is set to 'External', and allows the user to enter the tempera- ture at which the external cold junction is being maintained.
Sensor Break Type	Defines whether the sensor break becomes active for circuit impedances greater than expected. 'Off' disables Sensor Break detection. Break Low: Sensor break active if measured impedance is greater than the 'Break Low impedance' value given in table 2.2.1. Break High: Sensor break active if measured impedance is greater than the 'Break High Impedance' value given in table 2.2.1. See also Section 2.6.2 below.
Fault Response	Specifies the behaviour of the instrument if a sensor break is detected or if the input is over driven (saturated high or low). 'None' means that the input drifts, with the wiring acting as an aerial. 'Drive High' means that the trace moves to (Scale High +10%). 'Drive Low' means that the trace moves to (Scale Low -10%), where the 10% values represent 10% of (Scale High - Scale Low).
Sensor Break Val	A diagnostic representation of how close the sensor break detection circuitry is to tripping.
Measured Value	The (read only) measured value of the primary input before any scaling or linearisation is applied.
Measured Value2	As 'Measured Value', above but for the secondary input.
Internal CJ temp	The (read only) temperature of the internal cold junction associated with this channel.

Range	Break Low impedance	Break High Impedance		
40mV	~5kΩ	~20kΩ		
80mV	~5kΩ	~20kΩ		
2V	~12.5kΩ	~70kΩ		
10V	~12.5kΩ	~120kΩ		

Table 2.2.1 Minimum impedances for sensor break detection

Note: Break High impedance values would be used typically for sensors which have a high nominal impedance when working normally


2.2.2 Other channel parameters

See sections 4.4.2 and 4.4.3 of the main manual for details of channel trend and alarm parameters respectively.

Note: Trend colours and alarm settings for secondary inputs are configured in the maths channels to which they are wired.

2.3 INPUT ADJUST

Input adjust is carried out as described in section 4.1.8 of the main manual, except that where dual inputs are configured, the user must initiate adjustment to primary and secondary inputs separately. As shown in figure 2.3, a new field 'Input on Channel' is introduced for this purpose.

Only those channels with 'Type' set to 'Dual mA', 'Dual mV' or 'Dual T/C' appear in the list of secondary channels. In this example only channels 1 and 3 are configured as dual input.

Figure 2.3 Input adjust top level display

For primary inputs, all four channels are included in the list and can therefore be selected for adjustment. For secondary inputs, only those channels which have been configured as dual input are included.

2.4 NON-VOLATILE PARAMETERS

The following are additional to the non-volatile parameters list in section 5.2.4 of the main manual: Channel.N.Offset2 Channel.N.ScaleLow2 Channel.N.ScaleHigh2

2.5 PARAMETER LIST

The items listed below are additional to the parameters listed in section 5.3 of the main manual.

Parameter path	Description	Туре	Hex	Dec	Resolution
Channel.1.Main.IPAdjustState2	0 = Unadjusted; 1 = Adjusted	bool	181c	6172	Not applicable
Channel.1.Main.MeasuredValue2	Measured value of channel 1 secondary input	float32	1819	6169	Set by Channel.1.Main.Resolution
Channel.1.Main.Offset2	Channel 1 secondary input offset	float32	1818	6168	3dp
Channel.1.Main.PV2	The secondary input process variable (output) of channel 1	float32	0110	272	Set by Channel.1.Main.Resolution
Channel.1.Main.ScaleHigh2	Scale high value for channel 1 secondary input	float32	181b	6171	Set by Channel.1.Main.Resolution
Channel.1.Main.ScaleLow2	Scale low value for channel 1 secondary input	float32	181a	6170	Set by Channel.1.Main.Resolution
Channel 1. Main. Status2	Channel 1 secondary input PV (output) status	uint8	0111	273	Not applicable
Channel, L.Main, Statusz		uinto	0111	2/3	
	3 = Under range $4 =$ HW error $5 =$ Ranging				
	6 = Overflow 7 = bad 8 = HW exceeded				
	9 = No data 12 = Comm channel error				
Channel.1.Main.Type	Specifies the type of channel	uint8	1800	6144	Not applicable
	0 = Off 1 = TC 2 = mV				
	3 = V 4 = mA 5 = RTD				
	6 = Digital 7 = Test 8 = Ohms				
	9 = Dual mV 10 = Dual mA 11 = Dual T/C				
Channel.2.Main.IPAdjustState2	0 = Unadjusted; 1 = Adjusted	bool	189c	6300	Not applicable
Channel.2.Main.MeasuredValue2	Measured value of channel 2 secondary input	float32	1890	6297	
Channel.2.Main.Offset2				-	Set by Channel.1.Main.Resolution
	Channel 2 secondary input offset	float32	1898	6296	3dp
Channel.2.Main.PV2	The secondary input process variable (output) of channel 2	float32	0114	276	Set by Channel.1.Main.Resolution
Channel.2.Main.ScaleHigh2	Scale high value for channel 2 secondary input	float32	189b	6299	Set by Channel.1.Main.Resolution
Channel.2.Main.ScaleLow2	Scale low value for channel 2 secondary input	float32	189a	6298	Set by Channel.1.Main.Resolution
Channel.2.Main.Status2	Channel 2 secondary input PV (output) status (as channel 1)	uint8	0115	277	Not applicable
Channel.2.Main.Type	Specifies the type of channel (as channel 1)	uint8	1880	6272	Not applicable
Channel.3.Main.IPAdjustState2	0 = Unadjusted; 1 = Adjusted	bool	191c	6428	Not applicable
Channel.3.Main.MeasuredValue2	Measured value of channel 3 secondary input	float32	1919	6425	Set by Channel.1.Main.Resolution
Channel.3.Main.Offset2	Channel 3 secondary input offset	float32	1918	6424	3dp
Channel.3.Main.PV2	The secondary input process variable (output) of channel 3	float32	0118	280	Set by Channel.1.Main.Resolution
Channel.3.Main.ScaleHigh2	Scale high value for channel 3 secondary input	float32	191b	6427	Set by Channel.1.Main.Resolution
Channel.3.Main.ScaleLow2	Scale low value for channel 3 secondary input	float32	191a	6126	Set by Channel.1.Main.Resolution
Channel.3.Main.Status2	Channel 3 secondary input PV (output) status (as channel 1)	uint8	0119	281	Not applicable
Channel.3.Main.Type	Specifies the type of channel (as channel 1)	uint8	1900	6400	Not applicable
Channel.4.Main.IPAdjustState2	0 = Unadjusted; 1 = Adjusted	bool	199c	6556	Not applicable
Channel.4.Main.MeasuredValue2	Measured value of channel 4 secondary input	float32	1999	6553	Set by Channel.1.Main.Resolution
Channel 4 Main Offset2	Channel 4 secondary input offset	float32	1998	6552	3dp
Channel.4.Main.PV2	The secondary input process variable (output) of channel 4	float32	011c	284	Set by Channel.1.Main.Resolution
Channel.4.Main.ScaleHigh2	Scale high value for channel 4 secondary input	float32	199b	6555	Set by Channel.1.Main.Resolution
Channel.4.Main.ScaleLow2	Scale low value for channel 4 secondary input	float32	1990 199a	6554	Set by Channel.1.Main.Resolution
Channel.4.Main.ScaleLow2 Channel.4.Main.Status2		tioat32 uint8	199a 011d	285	,
	Channel 4 secondary input PV (output) status (as channel 1)				Not applicable
Channel.4.Main.Type	Specifies the type of channel (as channel 1)	uint8	1980	6528	Not applicable
Instrument.Security.Feature2Pass*	Features2 pass code (manufacturer supplied)	int32	10c4	4292	Not applicable
Instrument.Security.Feature3Pass	Features3 pass code (manufacturer supplied)	int32	10c5	4293	Not applicable

*Omitted in error from main manual

2.6 OTHER ITEMS

2.6.1 Sample rate

For dual input channels, both primary and secondary sample rate is reduced to 4 Hz (250ms) from the normal 8Hz (125ms).

2.6.2 Sensor break detection

Input sensor break detection is not supported for secondary inputs. The internal circuit acts as a 'pull up' on the secondary input which therefore saturates high in the event of a sensor break.

2.6.3 Dual mA input offset correction

If 'Dual mA' is selected as input type, then an automatic offset correction will be made, according to the entered shunt value.

2.6.4 Input range limitation

There is no 10V range associated with the secondary input. Any input greater than +2Vor less than -2V is deemed to be 'bad range'.

3 MILLIAMP INPUT SENSOR BREAK ACTION

Previous software versions have not supported sensor break detection for mA inputs. With this software issue, mA inputs have limits applied, such that if the process value lies outside these limits, a sensor break is assumed to have occured. These limits are (Input Io - 4% Span) and (Input high + 6% Span). For example, for a 4 to 20mA signal, an input below 3.36mA or above 20.96mA will trigger a sensor break event.

4 ERRATA

The following items are either incorrect in the main manual or were omitted from it in error.

4.1 LOW VOLTAGE OPTION RANGES

The Low Voltage option is incorrectly specified in Appendix A of the main manual. The correct figures are: 24Vac (-15% +10%) at 48 to 62Hz, or 24Vdc (-15% +20%).

4.2 POWER INTERRUPT INDICATION ON THE CHART

On power up, a red line is drawn across the chart.

On exiting configuration mode, a blue line is drawn across the chart.

When the instrument time is changed (manually - not through daylight saving action) a green line is drawn across the chart.

4.3 DIGITAL INPUT RESPONSE

Digital inputs are sampled every 31.25 ms. These samples are 2-sample debounced resulting in a 62.5ms contact closure response. A 62.5 ms pulse is latched until the next 125ms poll (8Hz). A 4Hz pulse stream is therefore the fastest that can be accurately detected.

This page is deliberately left blank

Eurotherm: International sales and service

AUSTRALIA Melbourne

Invensys Process Systems Australia Pty. Ltd. Telephone (+61 0) 8562 9800 Fax (+61 0) 8562 9801 E-mail info.eurotherm.au@invensys.com

AUSTRIA Vienna

Eurotherm GmbH Telephone (+43 1) 7987601 Fax (+43 1) 7987605 E-mail info.eurotherm.at@invensys.com

BELGIUM & LUXEMBOURG Moha

Eurotherm S.A./N.V. Telephone (+32) 85 274080 Fax (+32) 85 274081 E-mail info.eurotherm.be@invensys.com

BRAZIL Campinas-SP

Eurotherm Ltda. Telephone (+5519) 3707 5333 Fax (+5519) 3707 5345 E-mail info.eurotherm.br@invensys.com

CHINA

Eurotherm China Shanghai Office Telephone (+86 21) 61451188 Fax (+86 21) 61452602 E-mail info.eurotherm.cn@invensys.com

Beijing Office Telephone (+86 10) 5909 5700 Fax (+86 10) 5909 5709/10 E-mail info.eurotherm.cn@invensys.com

FRANCE Lyon

Eurotherm Automation SA Telephone (+33 478) 664500 Fax (+33 478) 352490 E-mail info.eurotherm.fr@invensys.com

GERMANY Limburg

Eurotherm Deutschland GmbH Telephone (+49 6431) 2980 Fax (+49 6431) 298119 E-mail info.eurotherm.de@invensys.com

INDIA Mumbai

Invensys India Pvt. Ltd. Telephone (+91 22) 67579800 Fax (+91 22) 67579999 E-mail info.eurotherm.in@invensys.com

IRELAND Dublin

Eurotherm Ireland Limited Telephone (+353 1) 4691800 Fax (+353 1) 4691300 E-mail info.eurotherm.ie@invensys.com

ITALY Como

Eurotherm S.r.l Telephone (+39 031) 975111 Fax (+39 031) 977512 E-mail info.eurotherm.it@invensys.com

KOREA Seoul

Invensys Operations Management Korea Telephone (+82 2) 2090 0900 Fax (+82 2) 2090 0800 E-mail info.eurotherm.kr@invensys.com

NETHERLANDS Alphen a/d Rijn

Eurotherm B.V. Telephone (+31 172) 411752 Fax (+31 172) 417260 E-mail info.eurotherm.nl@invensys.com

POLAND Katowice

Invensys Eurotherm Sp z o.o Telephone (+48 32) 7839500 Fax (+48 32) 7843608/7843609 E-mail info.eurotherm.pl@invensys.com

SPAIN Madrid

Eurotherm España SA Telephone (+34 91) 6616001 Fax (+34 91) 6619093 E-mail info.eurotherm.es@invensys.com

SWEDEN Malmo

Eurotherm AB Telephone (+46 40) 384500 Fax (+46 40) 384545 E-mail info.eurotherm.se@invensys.com

SWITZERLAND Wollerau

Eurotherm Produkte (Schweiz) AG Telephone (+41 44) 7871040 Fax (+41 44) 7871044 E-mail info.eurotherm.ch@invensys.com

UNITED KINGDOM Worthing

Eurotherm Limited Telephone (+44 1903) 268500 Fax (+44 1903) 265982 E-mail info.eurotherm.uk@invensys.com

U.S.A. Ashburn VA

Invensys Eurotherm Telephone (+1 703) 724 7300 Fax (+1 703) 724 7301 E-mail info.eurotherm.us@invensys.com

ED63

© Copyright Eurotherm Limited 2011

Invensys, Eurotherm, the Eurotherm logo, Chessell, EurothermSuite, Mini8, EPower, nanodac, Eycon, Eyris, Foxbobo and Wonderware are trademarks of Invensys plc, its subsidiaries and affiliates. All other brands may be trademarks of their respective owners.

All rights are strictly reserved. No part of this document may be reproduced, modified or transmitted in any form by any means, neither may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm Limited.

Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only.

Eurotherm Limited will accept no responsibility for any losses arising from errors in this document.

Eurotherm