
PC3000
REAL TIME
OPERATING SYSTEM

Handbook

Printed in England 0199 HA022918 Issue 3.1

© Copyright Eurotherm Controls Limited 1993
All rights strictly reserved. No part of this document may be stored in a retrieval system, or any form or by any means without prior
written permission from Eurotherm Controls Limited.
Every effort has been taken to ensure the accuracy of this specification. However in order to maintain our technological lead we are
continuously improving our products which could, without notice, result in amendments or omissions to this specification. We cannot
accept responsibility for damage, injury loss or expenses resulting therefrom.

PC3000 Real Time Operating System Contents i

CONTENTS

PREFACE

Chapter 1 INTRODUCTION

Chapter 2 MODES OF OPERATION

Chapter 3 REAL TIME SYSTEM STATE INFORMATION

Chapter 4 REAL TIME CLOCK

Chapter 5 SYSTEM WATCHDOG and FAULT RECOVERY

Chapter 6 I/O SUB-SYSTEM

Chapter 7 REAL TIME TASK SCHEDULER

Chapter 8 MEMORY USAGE

APPENDIX A TERMINOLOGY

APPENDIX B SYSTEM ERRORS

APPENDIX C SCHEDULER OVERHEADS, PERFORMANCE and LIMITATIONS

APPENDIX D EXAMPLE TASK CONFIGURATIONS

Preface iPC3000 Real Time Operating System

PREFACE
This reference manual provides detailed information on the PC3000 Real Time
Operating System software that manages the loading, initialisation and execution
of a User Program. User Programs are created and downloaded from a PC3000
Programming Station, i.e. PS or Microcell into the PC3000 control system.

You are advised to gain a basic understanding of the PC3000 programming
techniques including the use of function blocks as detailed in the PC3000 PS User
Guide or PC3000 Microcell User Guide before reading this manual.

The information provided will allow you to understand:

· How to develop User Programs that make full use of the PC3000 performance.

· How to design multi-tasking programs and efficiently exchange information
between tasks.

· How to diagnose faults and take recovery action.

· How to use system facilities, such as the Real Time Clock, that are provided in
the PC3000.

· How PC3000 memory is organised.

For further information refer to the PC3000 Reference documents:

PC3000 Hardware Reference - provides detailed information on all the PC3000
hardware modules including calibration, wiring and physical configuration details.
Part No. HA022919

PC3000 Functions Reference - describes all the functions that can be called within
the Structured Text (ST) language. Part No. HA022916

PC3000 Function Block Reference - describes the numerous function blocks
available to be incorporated into your control program for PID control, Ramps,
Counters, Filters, Timers etc. Part No.HA022917

Cont iPC3000 Real Time Operating System

Chapter 1

INTRODUCTION

Contents

Overview .. 1-1

I/O Concentrator .. 1-2

Real time task scheduler (Scheduler) 1-3

System manager ... 1-4

Default communications .. 1-4

Communications support ... 1-4

Multi-tasking system .. 1-5

Inter-task parameter transfer .. 1-6

1-1

Introduction

PC3000 Real Time Operating

Overview
This overview provides a general description of the main structure and functions of
the PC3000 system software. After creating a User Program on a PC3000
Programming Station, the compiled User Program is downloaded into the PC3000
Local Controller Module (LCM) and stored in non-volatile (battery backed) memory.
The LCM is always the first module in the main PC3000 rack and is responsible for
starting and running the User Program.

The LCM has an interface into the rest of the system provided by backplane buses,
i.e. Local Bus (LBus), Parallel Interface Bus (PiBus) and a Serial Interface Bus
(SiBus).

PROGRAMMING STATION

PSU

1 2 3 4 5 6 7 8 9 10 11 12

MAIN RACK

PSU

1 2 3 4 5 6 7 8 9 10 11 12

EXTENSION RACK

LOCAL BUS (LBus)

PARALLEL INTERFACE BUS (PiBus)
SERIAL INTERFACE BUS (SiBus)

LOCAL
CONTROLLER
MODULE (LCM)

PiBus
SiBus

RACK INTERFACE
MODULE (RIM)

TO UPTO 7 EXTENSION RACKS

POWER
SUPPLY
UNIT

‘

Figure 1-1 PC3000 Hardware overview

Introduction

1-2 PC3000 Real Time Operating

LBus

LBus is provided to interface with modules that have a requirement to exchange
large quantities of data with the LCM. Examples of such modules are; the Intelli-
gent Communications Module (ICM) that supports 4 high speed serial communica-
tions ports and the Eurotherm Network Module (ENM) that provides a high-speed
peer-to-peer network for PC3000 and Production Orchestrator communications.

PiBus

PiBus is provided to rapidly read from and write to digital I/O modules such as the
14 channel Digital Input or 12 channel Relay Output modules.

SiBus

SiBus is used to exchange status, and parameter values with modules such as
Analogue Input and Analogue Output modules AOM4.

The LCM also has a serial interface to a Rack Interface Module (RIM). RIMs can be
daisy-chained to add up to 7 extension racks. For further details on hardware
structure you should refer to the PC3000 Hardware Reference.

The LCM also has three serial communications ports A, B and C. Port B is normally
reserved for connection with the Programming Station. The two remaining ports can
be used for application specific communications; for further details on these ports
refer to the PC3000 Communications Overview document.

The functions of the LCM are shared between two processors: a 68000 based main
processor and an I/O Concentrator (IOC) which supports the I/O sub-system.
The I/O System is concerned with reading input sensor values, for example, from
thermocouples and writing values out to actuators, such as valve positioners. The
68000 is the main processing engine which executes the User Program. It has a
high-speed interface with the IOC for the rapid exchange of I/O data with the I/O
modules. The 68000 also has a 68881 co-processor that supports high speed floating
point (decimal) calculations. Most of the system software described in this manual
runs on the 68000 which is at the core of the PC3000 real time system.

I/O Concentrator
The IOC gathers I/O sensor input values from the hardware I/O modules for access
by the User Program and writes out new output values to the I/O modules as
generated by the running program to drive actuators, heaters etc. It communicates
with the I/O modules directly via the SiBus and PiBus interfaces.

When a User Programs first initialised to be run, software within the LCM generates
a list of I/O inputs to be read and written. This “I/O shopping list” depends on the I/O

1-3

Introduction

PC3000 Real Time Operating

requirements of a particular User Program. The list of I/O inputs and outputs are
organised to be read in two different scans. Nominally, fast inputs and outputs are
scanned every 10ms while slower analogue inputs are scanned every 100ms. The
transactions with the slower I/O modules are spread out through the 100ms period so
that a different small set of the slower transactions coincide with each 10ms scan.
These scan times can be modified; this is discussed in the Chapter Real Time Task
Scheduler.

I/O
SUB-SYSTEMUSER

PROGRAM

INTERFACE
 TO HARDWARE

I/O MODULES

REAL TIME
TASK

SCHEDULER

SYSTEM
MANAGER

DEFAULT
COMMUNICATIONS

COMMUNICATIONS
SUPPORT

SYSTEM
ERROR

LOG

WATCHDOG

HARDWARE
WATCHDOG

CIRCUIT

DEFAULT
EXTERNAL

COMMUNICATIONS

APPLICATION SPECIFIC
COMMUNICATIONS

I/O CONCENTRATOR
(IOC)

LOCAL CONTROLLER MODULE
(LCM)

MULTI-TASKING
SYSTEM

PiBus + SiBus
COMMUNICATIONS

Figure 1-2 System architecture overview

When a User Program is loaded into the LCM, it requires services and support from
the system to manage its start-up and execution. The program also requires an
interface with the PC3000 I/O system and with the communications support
software. All the components of this support infra-structure run on the LCM and are
depicted in the System Architecture Overview figure 1-2.

Real time task scheduler (scheduler)
Real Time Task Scheduler is responsible for the timely execution of the User
Program. It manages the synchronisation between the execution of tasks within the
User Program and the gathering of input values from the I/O system and the dispatch
of new values to outputs via the I/O system. The relationship between the User
Program and the Scheduler is depicted in the Multi-tasking System figure 1-3.

Introduction

1-4 PC3000 Real Time Operating

System manager
System Manager provides a wide range of services and management functions to
support the interface between the Program and the PC3000 system including:

1. Loading of the User Program into memory

2. Control of the PC3000 operational modes

3. Management of program start-up and shut-down

4. Detection and reporting of system errors in a system error log

5. Maintenance of regular trigger signals to an external hardware watchdog

6. Interface with the Real Time Clock

Default communications
Default Communication is provided to access the system manager and User Program
for system administration and diagnostic purposes and is used by the PC3000
Programming Station. It is referred to as “default” because it is always available on
LCM ports A,B and C, for ports that are not dedicated to a specific protocol in a User
Program. For example, if a communications driver function block, such as JBus_S
(J-Bus® slave), is assigned to port A, Default Communications will not be available
on port A while the User Program is running. However, whenever the User Program
is not ”RUNNING”, Default Communications is always provided on ports A, B
and C.

The Default Communications. provides the Eurotherm EI Bisync protocol in slave
mode operating at 9600 Baud. For further details refer to the PC3000
Communications Overview document.

Communications support
Communications Support is provided for a wide range of different protocols such as
J-Bus®, Siemens 3969®. Most of the low level protocol details are dealt with by the
communications support software, so that a detailed knowledge of communications
protocols is not required. A specific protocol for a port on the LCM or on an
Intelligent Communications Module (ICM) can be provided by creating an instance
of the required communications driver function block in the User Program and
assigning the port via the function block’s Port parameter. For further details refer to
the PC3000 Communications Overview or the specific communications function
blocks in the PC3000 Function Block Reference.

1-5

Introduction

PC3000 Real Time Operating

Multi-tasking system
The Real Time Task Scheduler shown in the Multi-tasking system figure 1-3,
provides the PC3000 with the ability to execute a User Program that has a number
of tasks running in parallel.

Note: PC3000 supports two forms of parallel execution.

A part of the User Program which may include a number of function
blocks and the Sequential Function Charts (SFCs) can be controlled
by a single task. For example, a collection of function blocks can be
configured to execute every 20ms.

It is also possible within an SFC to have a number of sequences that
are executed in parallel.

REAL TIME
TASK

SCHEDULER

I/O
 -

 IN
P

U
T

S

I/O
 -

 O
U

T
P

U
T

S

FB
A

I/O
 -

 IN
P

U
T

S

I/O
 -

 O
U

T
P

U
T

S

FB
C

FB
B

TASK 2 TASK 1

Reading and writing Function Block parameters via ST statements in an SFC

I/O
 -

 IN
P

U
T

S

I/O
 -

 O
U

T
P

U
T

S

FB
E

FB
D

A
A
AATASK 3

COMMUNICATIONS
SUPPORT

ST wiring
between tasks

Figure 1-3 Multi-tasking system

Introduction

1-6 PC3000 Real Time Operating

The function blocks within the User Program are assigned to be under the control of
a designated task. By default, the PC3000 Programming Station arranges function
blocks to be in either a 10ms or 100ms task. Function blocks dealing with purely
digital parameters such as digital I/O function blocks, are nominally run in the 10ms
task, while function blocks associated with analogue I/O or floating point
computation and the Sequential Function Chart (SFC) are run in the 100ms task.
However, these are only default task assignments. It is possible to assign function
blocks to other tasks or to create more tasks, if there are special timing or
performance requirements. Additional tasks can be specified by creating Task
function blocks when the User Program is being developed on the PC3000
Programming Station. Refer to Chapter 7 Real Time Task Scheduler for further
details.

Figure 1-3 shows an example User Program consisting of three tasks. Each task is
associated with a number of I/O input and output values defined by the I/O
parameters accessed by the function blocks assigned to the task.

Each task has an interval, defined by the corresponding task function block’s
Interval parameter which defines how often the task should be executed. The
Scheduler is designed to re-run each task at the required interval so that User
Program execution is deterministic. For example, the period between sampling an
analogue input and updating an associated output for a PID loop is always the same.

However, note that the actual task interval may be affected by the loading on the
system and the execution time and priority of other tasks. If a task is not executed
within the required deadline, the task function block will report a task overrun; this is
regarded as an overload condition.

Inter-task parameter transfer
ST wiring can be used to transfer parameters between function blocks assigned to
different tasks. ST statements in Step bodies and in Transitions can be used to read
and write parameters from function blocks in different tasks.

Because there is no inter-task buffering of parameters the following principles should
be considered when transferring parameters between function blocks in different
tasks.

1. The value of input parameters of function blocks in a lower priority task may
change while the task is executing, if the parameter values come from function
blocks within higher priority tasks

2. The value of input parameters of function blocks in a higher priority task cannot
be changed by function blocks in a lower priority task while the higher priority
task is executing.

Further principles and restrictions regarding the interaction of tasks and parameter
passing are described in detail in Chapter 7, Real Time Task Scheduler.

Cont iPC3000 Real Time Operating System

Chapter 2

MODES OF OPERATION

Contents

Operating modes .. 2-1

Changing modes .. 2-3

Halting sequence execution .. 2-5

Clearing the user program... 2-7

Initialisation and power-up tests 2-7

Start-up strategy .. 2-8

Selecting a start-up startegy ... 2-11

2-1

Modes of Operation

PC3000 Real Time Operating System

Operating modes
The PC3000 real time system can be in one of a number of modes. The principal
operating modes are :

IDLE - This mode exists when the PC3000 real time system does not
have a valid User Program to execute. This may be because
no program has been down-loaded or the last loaded program
has become invalid or cleared.

RESET - This mode exists when a User Program is loaded and has been
initialised, ready to be executed. All function block input
parameters are reset to their “Cold Start” values.

HALTED - This mode exists when a User Program is not executing and
function block input parameters are not set to their “Cold
Start” values.

RUNNING - This is the normal mode when the PC3000 is running a user program.
The function blocks and sequences defined by the Sequential
Function Charts (SFCs) are executed.

SEQ_HELD - This mode exists when the Sequences (i.e. SFCs) have been held, i.e.
their execution has been suspended. However, the function blocks
and associated wiring continue to execute.

There are also a number of transient modes which exist while the PC3000 is starting-
up, powering down, being loaded etc. These modes are not normally visible on the
Programming Station but are defined here for diagnostic and background information
purposes.

INITIALISING - This mode exists while the User Program is being prepared for
initial execution. During this period, the program is verified and
function block input parameters are reset to their ”Cold Start” values.

LOADING - This mode exists while the Programming Station is downloading a
User Program into the LCM memory.

Modes of Operation

PC3000 Real Time Operating System2-2

STOPPING - This mode exists while the User Program is stopping execution.
All tasks are closed down in an orderly fashion. This mode persists
until the longest duration task has stopped. For example, if the
longest duration task is 10 secs., this mode may exist for up to
10 secs.

PRE-RUNNING - Prepares the system to begin User Program execution.
During this period, communications function blocks are
associated with Slave Variable function blocks.

SHUTDOWN - A mode that exist between receiving the power failure signal from
the power supply, and the power supply ceasing.
External communications are disabled during this period.

2-3

Modes of Operation

PC3000 Real Time Operating System

Changing modes

Figure 2-1 Running a program

The normal mode changes to load and run a program are shown in figure 2-1.
Program down-load and switching a program into RUNNING mode require
commands to be issued from the Programming Station.

Note: Mode changes are made by the Programming Station via the
Default Communications by writing to the PC3000 system mode
parameter (EI Bisync mnemonic MN).

IDLE

LOADING

INITIALISING

RESET

PRE-RUNNING

RUNNING

Power-up with no program

Program down-load initiated from the Program Station

PC3000 with loaded program
Function Blocks reset with Cold Start values

Program switched to RUNNING via the Program Station

Program running, Function Blocks, wiring and
sequencing executing

*

*

*

* State transitions controlled by PC3000 system

Modes of Operation

PC3000 Real Time Operating System2-4

STOPPING

HALTED

PRE-RUNNING

RUNNING

Switch to RUNNING via Programming Station

Switch to HALT via
Programming Station

Program execution halted.
Function Block input parameters
retain values from last task
execution Program execution halted.

Function Block input
parameters reset to Cold
Start values

*

*

* State transitions controlled by PC3000 systems

INITIALISING

RESET

STOPPING

*

*

Switch to RESET
via Programming Station

Figure 2-2 Changing the mode of a running program.

Figure 2-2 shows the two main mode changes from a RUNNING a program. By
issuing a command to switch to HALT mode, the program execution ceases and
enters the transient STOPPING mode before entering the HALTED mode; function
block input parameters retain values from the last task execution. By issuing the
command to RESET the program, the PC3000 enters transient modes STOPPING
and INITIALISING before entering the RESET mode. The function block input
parameters are set to their Cold Start values.

If any function block input parameter is modified via the external communications
while the PC3000 is in the RESET mode, the mode is automatically changed to
HALTED. The mode can be switched back to RESET by issuing a RESET command
from the Programming Station.

For example, if the program has been reset and the PC3000 is in the RESET mode,
changing the value such as a PID proportional band Prop_Band parameter via the
Programming Station, will cause the mode to change to HALTED. Changing
parameter values from their normal Cold Start values may be useful when it is
necessary to have alternative start-up values.

2-5

Modes of Operation

PC3000 Real Time Operating System

Halting sequence execution
By switching the PC3000 into SEQ_HELD mode, it is possible to allow the Function
Blocks and associated wiring to continue execution, but to halt sequence execution.
This mode is provided for commissioning purposes; for example, when there is a
requirement to evaluate PID loop performance with the sequencing part of the
program disabled. SEQ_HELD mode can also be useful if there is a need to
temporarily halt the sequencing to examine the program state to check that the
program is behaving correctly.

It is possible to switch into SEQ_HELD by issuing a command from the
Programming Station. The effect of issuing this command while PC3000 is in
one of the many modes is shown in figure 2-3.

Sequencing always halts after completely executing all currently active steps.

Note: The step duration parameters (.T) are not updated while the
sequence is halted. Therefore placing the PC3000 in SEQ_HELD
mode, if only temporarily, will cause timing derived from step
durations to be inaccurate.

Modes of Operation

PC3000 Real Time Operating System2-6

Figure 2-3 Halting sequence execution

PRE-RUNNING

SEQ_HELD

RUNNING

Program switched to RUNNING via Programming, Station
Note: Sequence execution continues with the same set of
active steps as existing at the time of halting sequence
execution.

Program switched to SEQ_HELD via Programming Station

PRE-RUNNING

RESET

SEQ_HELD

Program switched to SEQ_HELD while in RESET

PC3000 executes function blocks and wiring initialised from
the Cold Start values

SEQ_HELD

HALTED

Program switched to SEQ_HELD while HALTED

PC3000 executes function blocks and wiring only continuing
from the current function block parameter values

2-7

Modes of Operation

PC3000 Real Time Operating System

Clearing the user program
While the PC3000 is in RESET, HALTED or LOADING modes, it is possible to
clear the User Program by issuing a clear User Program command from the
Programming Station. The PC3000 mode will then change to IDLE.

Initialisation and power-up tests
When PC3000 powers-up a wide range of self-diagnostic system confidence checks
are made to ensure that the system is sound.

These checks include :

a) Memory

b) Hardware handling serial communications

c) System watchdog

d) System timing

e) Floating point co-processor

f) User Program verified via a checksum

If the LCM and IOC have initialised successfully, the two green indicators on the
LCM module should be lit within 5 seconds after power-up, otherwise, consult the
PC3000 Hardware Reference.

If a fatal hardware error prevents the system from running, an encoded error number
will be signalled on the LCM system indicators. In which case, PC3000 will not enter
an operating mode.

If a non fatal hardware error is detected, the LCM system indicators will signal an
error number once, and then the PC3000 will enter an operating mode.

The following hardware errors are non-fatal :

a) Real Time Clock crystal or processor timing inaccurate.

b) Communications ports B or C faulty.

Modes of Operation

PC3000 Real Time Operating System2-8

HARDWARE
CONFIDENCE CHECKS

CHECK PROGRAM
VALIDITY

EVALUATE
START-UP STRATEGY

IDLE
Check the Start-up
Strategy and run user
program accordingly

Checks passed

SIGNAL ERROR
ONCE ON INDICATORS

Non Fatal Fatal

SIGNAL ERROR
ON INDICATORS
CONTINUOUSLY

Valid

Signalled once

Invalid

Power applied

Figure 2-4 Initialisation and power-up

After completing the hardware checks, the validity of the loaded User Program is
checked. If valid, the Start-up Strategy is evaluated and if appropriate, the User
Program is executed. Normally this should occur within 5 seconds after power-up. If
the program is not valid, has been cleared, or a program has never been loaded, the
PC3000 will enter the IDLE mode.

Start-up strategy
The PC3000 provides a range of Start-up Strategies which define the behaviour of
the User Program when power is restored after a power failure.

2-9

M
odes of O

peration

PC
3000 Real Tim

e O
perating System

Figure 2-5 Start-up strategies

EVALUATE
START-UP STRATEGY

CHECK WARM
START PARAMETERS

RUNNING

Warm Start or
Warm Start Else Cold Start

OK

EVALUATE TYPE
OF WARM START

FAIL

"Cold Start"

Warm Start Else
Cold Start

CHECK TASKING
PARAMETERS

Warm Start Only

OK

IDLE

"Do Not Start Up"

FAIL

CHECK
INITIALISATION

RUNNING

OK

Cold Start

IDLE

FAIL

"Cold Start"

CHECK COLD
START VALUES

RESET

Still at Cold Start
Values

Do Not Start Up

HALTED

Values
have
changed

"Do Not Start-up"

Modes of Operation

PC3000 Real Time Operating System2-10

The strategies are selected when a program is created on the Programming Station by
selecting a value for the Start_Strat parameter of the PcsSTATE function block.

Strategies on power-up are :

Do Not Start-Up -

The User Program is not run. If a program is loaded and function block
parameters have been changed since the program was first initialised,
PC3000 will enter the HALTED mode, otherwise it will enter the RESET
mode.

Cold Start -

The User Program is initialised, function block input parameters are reset
to their cold start values and the program is run. If the program is not valid,
PC3000 will enter the IDLE mode.

Warm Start -

The User Program continues execution with function block parameters
having the values retained from power-fail; the sequencing continues from
the last set of active steps. If warm start fails, PC3000 will enter either
RESET, HALTED or IDLE modes.

Warm Start Else Cold Start -

This is the same as Warm Start strategy except if checks within the warm
start fail, instead of entering RESET, HALTED or IDLE, a Cold Start
(as defined) is attempted.

Warm Start within Downtime else Cold Start -

The downtime, i.e. time for which power has been off is checked against the
maximum acceptable downtime as defined in the OK_Down_Time param
eter of the PcsSTATE function block. If the power has been off for less than
this period, a warm start is attempted. If it is not successful, or if the
downtime is greater than the acceptable period, a Cold Start is attempted.

Warm Start within Downtime else Do Not Start -

The downtime, i.e. time for which power has been off is checked against the
maximum acceptable downtime as defined in the OK_Down_Time
parameter of the PcsSTATE function block. If the power has been off for less than
this period, a warm start is attempted. If it is not successful or if the downtime is
greater than the acceptable period, the program is not run.

2-11

Modes of Operation

PC3000 Real Time Operating System

Selecting a start-up strategy
Care should be taken to select the appropriate strategy. This depends very much on
the behaviour of the plant and process which the PC3000 is controlling.

Examples:

If the PC3000 is controlling a system with mechanisms that may assume undefined
positions after a power-fail and for which manual resetting may be necessary, Do
Not Start-up will be the safest strategy.

If the controlled plant can always be re-started from the same defined state on
power-up, then select the Cold Start strategy.

Heat treatment applications will typically want to continue control after the
resumption of power. For example, if a furnace is still hot, it may be possible to
continue to run the User Program from where power was lost. The Warm Start
within Downtime else Cold Start strategy will be appropriate, with the
OK_Down_Time parameter set to the period for which the cooling of the furnace
is tolerable.

Cont iPC3000 Real Time Operating System

Chapter 3

REAL TIME SYSTEM STATE
INFORMATION

Contents

Overview .. 3-1

System error log .. 3-2

PcsSTATE function block ... 3-3

3-1

System Watchdog and Fault Recovery

PC3000 Real Time Operating System

Overview
Information about the state of the PC3000 real time system is available by reading
certain system parameters via the Default Communications. For further information
refer to the PC3000 Communications Overview document.

The following information is presented on screens on the Programming Station :

Firmware Version

e.g. 2.10 - this gives the version number of the LCM system software.

User Program Name

e.g. ProcessA - the name of the currently loaded program.

User Program Size

Size of the loaded User Program in bytes. This is the total memory require
ment for the executable program.

Maximum Program Size

The maximum memory space available for loading a User Program.

User Program Status

This is normally set to “OK” for a valid program. However the following
errors may be reported :

“No User Program Loaded” see note below

“PC3000 Still in Load Mode” see note below

“Bad User Program Checksum”

“User Program Header Error 1”

“User Program Header Error 2”

Other system error numbers may be reported.

Note : All errors except “OK” imply that the User Program is
corrupted and should be downloaded again.

System Watchdog and Fault Recovery

PC3000 Real Time Operating System3-2

User Program Source Size

This gives the size in bytes for the Source Code of the executable program if it
has been downloaded from the Programming Station. Note, that it is optional

whether the Source Code is downloaded.

Maximum Source Size

The maximum memory space available for holding Source Code.

Status at Start-up

e.g. System cold started - this defines the type of start-up made last time the
system powered up.

Start-up Strategy

The currently selected start-up strategy. (See paragraph on Start-up Strategy in
Chapter 2)

System error log
The system provides an error log which records all internal system errors and
significant system events. The log is organised in reverse chronological order, i.e. the
latest error is always inserted at the top of the list. The log can hold up to 40 entries.
If the log is full, the oldest error is removed, to enable a new entry to be added to the
top of the log. Each error is recorded with a time stamp, an error code and two
diagnostic information fields.

See Appendix B, System Errors for further details.

The error log is cleared when a User Program is down-loaded.

System errors are reported if the I/O modules required by the loaded User Program
are not fitted. During commissioning a new system, a large number of errors may be
logged because of this reason. The Reg_IO_Fail parameter in the PcsSTATE
function block can be used to enable and disable the registration of I/O failures. I/O
error registration can be disabled during commissioning but should be enabled when
the system is running normally.

If the system is functioning normally, the only system errors that should be seen in
the log are :

400 - Power failure
499 - Power recovery (a system event)

The User Program can monitor the number of system errors by testing the
Sys_Alarms parameter in the PcsSTATE function block. The number should not
normally change while the program is running. The system error count includes all

3-3

System Watchdog and Fault Recovery

PC3000 Real Time Operating System

errors reported since the User Program was loaded and not the number in the log.

The system error log can be read via the Default Communications by reading certain
system parameters, see PC3000 Communications Overview document.

PcsSTATE function block
This function block provides an interface between the system manager and the User
Program. Every program is built with one instance of this block. Refer to the PC3000
Function Block Reference for a full description of this block.

Note: PcsSTATE is not updated unless the program is running, i.e.
PC3000 is in RUNNING or SEQ_HELD operating modes.

The principal parameters are :

Start_Strat - defines the currently selected start-up strategy, see the Modes of
Operation Chapter.

Last_Down_Tm - the period the power was off the last time.

Last_Start-Up - the type of start-up that occurred the last time the system
powered up.

Reg_io_Fail - normally this is set to “YES” to record I/O module errors in the
system error log. Set to “NO” will inhibit logging I/O errors.

Module_Fault - records the position of the first faulty I/O channel found by rack
number, module number and channel number. If set to zero, no
faulty I/O channels are present.

Battery_Cond - shows the condition of the battery for the non-volatile memory.
This can have values Good, Low and Faulty. If set to low, the
battery should be changed.

HW_link - shows the value of the hardware links on the LCM board used to
set the address for PC3000 communications. See the PC3000
Hardware Reference and PC3000 User Guide for further details.

System Watchdog and Fault Recovery

PC3000 Real Time Operating System3-4

Sys_Alarms - records the total number of system errors logged since the current
User Program was loaded.

The parameters Seq_Mode and HW_fault are not currently supported and are
provided for future enhancement.

Cont iPC3000 Real Time Operating System

Chapter 4

REAL TIME CLOCK

Contents

Overview .. 4-1

4-1

Real Time Clock

PC3000 Real Time Operating System

Overview
The LCM is equipped with a Real Time Clock (RTC) for time stamping and general
time management within a User Program. Access to the Real Time Clock is provided
by the RT_Clock function block; each User Program is built with one instance of this
block.

The RTC is maintained by the non-volatile memory battery when the power is off. It
is accurate to +/- 5 minutes per year. Adjustments to the calendar for leap years is
provided.

Note: The RTC can only be set with the current time via the Pro-
gramming Station when the PC3000 is running with a valid User
Program.

The RTC may be set as follows:

1. Run the user program by setting the PC3000 mode to Run.

2. Select the RT_Clock Function Block from the SYSTEM Class.

3. Display the Function Blocks parameter screen.

4. Enter the required Date and Time into the Preset_DT parameter.
The time is represented as a 24 hour clock.

5. Change the Preset_Clk parameter from Tock (0) to Tick (1) in order to
‘clock’ the new date and time into the RTC.

6. Reset the Preset_Clk parameter from Tick (0) to Tock (0).

Any changes made to Preset_DT or Preset_Clk will be ignored if the program is not
in the Run state.

Cont iPC3000 Real Time Operating System

Chapter 5

SYSTEM WATCHDOG and
FAULT RECOVERY

Contents

Overview .. 5-1

Detection of repeated watchdog resets 5-1

5-1

System Watchdog and Fault Recovery

PC3000 Real Time Operating System

Overview
The LCM is equipped with hardware watchdog that must be repeatedly triggered by
the system software within 9 ms otherwise the watchdog forces a total system reset.
This is provided to detect the exceptional situation where the system has mal-
functioned. For example, if the system software runs in an endless loop or executes
with corrupt data, the system reset will cause the PC3000 to re-initialise as if it was
recovering from a power failure. The start-up will then follow the current start-up
strategy. A watchdog reset is recorded in the system error log as error number 401.

There is also a watchdog timer on each task of the User Program. This is fully
described in the paragraphs on the Real Time Task Scheduler. If a task fails to
complete within an period defined by the task watchdog, error 804 is logged and a
system reset is actioned, in the same manner as a hardware watchdog detected
failure.

Detection of repeated watchdog resets
There are further checks within the system fault recovery software to ensure that the
system is running in a stable state; this is regarded as running without watchdog
resets for longer than 30 seconds. If the system is unable to stabilise after 10 watch-
dog resets and subsequent restarts, the User Program is aborted by being cleared and
the PC3000 is forced into the IDLE mode. In which case, an error 404 is recorded in
the system error log.

Note: A repeated watchdog reset may occur if the User Program has
been built on a Programming Station which does not have the correct
version of the Function Block library installed.

WARNING

I/O State after forced IDLE Mode

If repeated watchdog resets result in the PC3000 aborting the User
Program and entering the IDLE mode, the physical outputs may be in
an indeterminate state. The system will attempt to set all digital
outputs to their low state, e.g. relays driven by DO12_RLY channels
will be off, analogue outputs will set output levels to zero. These
values are not guaranteed and such output values may not be safe for
the current plant state. For safety, it is recommended that the fail safe
relay such as on the DO11_RFS is used. This can be used to detect a
watchdog reset and therefore can be wired to inhibit critical outputs
such as heaters etc.

For further details on the fail safe relay, refer to the DO11_RFS module or the fail
safe relay in power supply module in the PC3000 Hardware Reference.

Cont iPC3000 Real Time Operating System

Chapter 6

I/O SUB-SYSTEM

Contents

Overview .. 6-1

I/O communications .. 6-4

Types of I/O communications ... 6-7

Reducing I/O communications bandwidth usage 6-11

I/O latency .. 6-11

Digital inputs/outputs ... 6-12

Analogue inputs/outputs .. 6-13

Composite timing .. 6-14

Digital input to analogue output 6-14

Analogue input to digital output 6-14

Timing for fast analogue input and output

function blocks .. 6-14

I/O error codes ... 6-15

6-1

I/O Sub-System

PC3000 Real Time Operating System

Overview
The PC3000 I/O subsystem comprises the physical I/O modules, the communication
bus between the Local Controller and the I/O modules via a device described as the

Input Output Concentrator (IOC).

MAIN PROCESSOR

LOCAL BUS (LBus)

LCM

68000

IOC

DATA EXCHANGE

INPUT/OUTPUT
CONCENTRATOR

SERIAL INTERFACE
BUS TO EXTENSION
RACKS

PARALLEL
INTERFACE BUS
(PiBus)

SERIAL INTERFACE
BUS (SiBus)

PC3000 BACKPLANE BUSES

Figure 6-1 A simplified view of the PC3000 Main Processor/IOC Interface

The function of the IOC is to act as a data concentrator for data sent to or received
from the I/O modules. It offloads the task of I/O message handling from the main
processor in the Local Controller Module (LCM).

It distributes data to, and collects data from the I/O modules according to an ordered
list provided by the main processor. Data is sent or collected at pre-defined intervals
ensuring that all I/O transactions are fully deterministic.

I/O Sub-System

PC3000 Real Time Operating System6-2

Communication between the IOC and the main processor is co-ordinated at a
pre-defined ‘rendezvous’ time.

Once the data has been gathered it is stored in an internal buffer. This data is used to
update the I/O Function Blocks outputs when they next execute. For more
information on the relationship between physical I/O, Function Block execution etc.
consult the paragraph ‘Performance Considerations’page 6-8 and Chapter 7 Real
Time Scheduler.

6-3

I/O Sub-System

PC3000 Real Time Operating System

M
od

ul
e

D
at

a

M
od

ul
e

Fi
rm

w
ar

e

M
od

ul
e

F
ir

m
w

ar
e

M
od

ul
e

D
at

a

M
od

ul
e

Su
pp

or
t

F
un

ct
io

n
B

lo
ck

Fu
nc

tio
n

B
lo

ck

I/
O

 F
un

ct
io

n
B

lo
ck

s
M

od
ul

e
Su

pp
or

t

IO
C

SI
B

U
S

F
un

ct
io

n
B

lo
ckH
ar

dw
ar

e
C

ha
nn

el
s

H
ar

dw
ar

e
C

ha
nn

el
s

In
st

an
ce

D
at

a

A
AADa

ta
E

xc
ha

ng
e

A
AC

O
M

M
S

Figure 6-2 Analogue module example

I/O Sub-System

PC3000 Real Time Operating System6-4

I/O Function Blocks such as Analog_In or Debounce_In are automatically created
during the process of ‘Hardware Definition’. This is the User Program development
phase which is associated with the assignment of the physical I/O modules to specific
rack slots. Following module assignment, the channels are named. The Function
Blocks created as a result of this process may then be manipulated in the same way
as any other PC3000 Function Block. The flow of data between function blocks and
hardware channels is shown in figure 6-2.

These Function Blocks provide an interface to, and a view of the physical I/O. The
process of ‘Hardware Definition’ is covered by the User Guide relating to your
Programming Station. Refer to PC3000 Programming Station User Guide or PC3000
Microcell User Guide for further details.

I/O communications
Data is sent to, or collected from the I/O modules at pre-defined times. This occurs
on a regular ‘heartbeat’, referred to as the system tick.

In a simple PC3000 configuration there would be two such ticks; one is associated
with the digital I/O and the other the analogue I/O. The analogue I/O tick is a
multiple of the digital I/O tick. Each tick is split up into a number of time ‘slices’

with each slice having a pre-defined purpose.

10ms 20ms 30ms 40ms
0ms

50ms 60ms 70ms 80ms

Tick

90ms
100ms

Digital
I/O Tick

Digital
I/O Tick

Analogue I/O Tick

Figure 6-3 Relationship between digital and analogue I/O tick

The value of certain I/O process parameters, that may change rapidly, are required
every tick. For instance, a digital input process value digin.PV should be updated
every digital I/O tick. Regular updates of such parameters are necessary to ensure
deterministic operation. However, many configuration parameters rarely require
updating on a regular basis.(e.g. a parameter that defines the linearisation type of an

6-5

I/O Sub-System

PC3000 Real Time Operating System

analogue input channel). Once set, these parameters are rarely changed. In the event
of a change, such configuration parameters are sent to the I/O module using spare
time allocated in every time slice.

0ms

Tick

10ms

Tick

O/P's O/P's I/P's I/P's

'This Tick' 'Next Tick'

SOLICITED READ:
Aquire PiBus read data
for next tick

SPARE TIME:
Service 'unsolicited' messages
and poll module type etc

SOLICITED READ:
Aquire SiBus read data
for next tick

SOLICITED WRITE:
Update SiBus write data
for this tick

SOLICITED WRITE:
Update PiBus write data
for this tick

Data exchanged
between main
processor and IOC

Figure 6-4 How the tick is split up

Parameters that require regular updates are accessed using solicited messages. In
contrast configuration parameters are accessed using unsolicited messages since they
are rarely changed.

Solicited messages are fixed in time when the program is compiled. Unsolicited
messages are non-deterministic, in that they are scheduled or fitted in, according to
available spare time. This spare time is reduced as the number of I/O channels and
hence the number of solicited messages increases.

I/O Sub-System

PC3000 Real Time Operating System6-6

This spare time is also used to ‘poll’ the I/O modules on a regular basis in order to
establish the type and status of the I/O modules fitted to the rack.

All parameters such as I/O input and output values are updated as solicited
parameters; other configuration or diagnostic parameters are handled using
unsolicited messages.

Whilst all fast digital I/O is updated every tick, it is not possible to update all
analogue I/O at the same rate. In a typical system the analogue I/O will run at a rate,
say, 10 times slower than the digital I/O. The amount of analogue I/O in a typical
system would take longer to collect than a single digital I/O tick. As an example, a 24
loop system, with a digital I/O tick of 10ms and an analogue I/O tick of 100ms would
require 24ms to gather the analogue data.

As a result, analogue I/O is distributed evenly across all digital I/O ticks. In the
previous example, one-tenth of the analogue I/O is gathered in each tick.

30ms 40ms 50ms 60ms 70ms 80ms

Digital I/O Analogue I/O Tick

90ms
100ms

1/10th Total Analogue I/O Updated

20ms10ms
0ms

Digital I/O Updated
Example: Analogue process value for Rack 1,
Module 1, Channel 1, Always read on 4th Tick

Figure 6-5 I/O Update

In this example, there are 10 digital I/O ticks to every single analogue I/O
tick. The analogue data gathered on the ‘nth’ tick will always be the same.
This ensures deterministic operation of the analogue I/O, i.e. a given I/O
point is processed using constant sample rate.

6-7

I/O Sub-System

PC3000 Real Time Operating System

Types of I/O communications

PSU

IOC

PiBus : 1MHz 8 bit parallel multiplexed address data bus

SiBus : 375K baud full duplex serial bus

LBus : Extension of the LCM's address and
data busses. Modules are mapped within the
LCM's address space

PiBus : 1MHz 8 bit parallel multiplexed address data bus

SiBus : 375K baud full duplex serial bus

LCM IO Modules

1 2 3 4 5 6 7 8 9 10 11 12

PSU RIM IO Modules

1 2 3 4 5 6 7 8 9 10 11 12

Figure 6-6 PC3000 Buses

SiBus Communications

The PC3000 Serial Interface Bus, is a two-wire, asynchronous communication
scheme with the I/O Concentrator acting as the master and I/O modules responding
as slaves. The Bus operates at 375KBaud. It is used to communicate with intelligent
I/O modules such as analogue inputs and outputs where local input/output processing
is carried out by on-board micro-controllers.

It is also used to communicate with the Rack Interface Modules which reside in
extension racks.

All communications transactions are checksummed to ensure robust communications
and a re-try strategy is provided to ensure that messages are not lost in environments
with high radio frequency interference (RFI) noise.

I/O Sub-System

PC3000 Real Time Operating System6-8

PiBus Communications

The PC3000 Parallel Interface Bus, is an 8 bit multiplexed address/data bus used to
communicate with digital input and output modules. All data and addresses
transmitted on the bus are hardware parity checked to ensure robust communications.
The bus operates at a data rate of 1Mbit/s.

The bus is controlled by the I/O Concentrator directly in the case of the main rack, or
by the Rack Interface Module, for an extension rack.

LBus Communications

The PC3000 Local Bus, is a high speed parallel address, data and control bus. It is
reserved for use with specialist modules such as communications, network interfaces
and high speed I/O functions. Unlike, SiBus or PiBus communications, I/O messages
passed via this bus are not controlled by the I/O Concentrator. The main processor
maintains responsibility for I/O update.

Communications between Racks

The Serial Interface Bus (SiBus), is connected to all extension racks by the extension
rack interface on the Local Controller Module and is ‘daisy-chained’ between racks
via Rack Interface Modules. Within the main rack, all digital I/O which communi-
cates by means of the Parallel Interface Bus (PiBus), is accessed directly by the IOC.

In extension racks, all digital I/O communicating on PiBus, is accessed by the Rack
Interface Module. The IOC is responsible for ‘packing’ data intended for ‘remote’
digital output modules located in the extension racks, for subsequent ‘unpacking’ by
the Rack Interface Module. Data read from the remote digital input modules is
unpacked by the IOC.

Digital I/O modules located in extension racks are updated at the same tick rate as
digital I/O in the main rack.

Performance Considerations

Bandwidth Considerations

From the definition of the I/O required, it is possible to calculate the spare I/O
bandwidth, and hence determine suitable analogue and digital task rates.

The I/O bandwidth usage is calculated from a number fixed overheads, and
specific overheads which are dependent on the I/O channels being used.

Fixed Overheads

There is a fixed overhead of 250µS per extension rack containing digital input
modules, plus 250µS per extension rack containing digital output modules. This

6-9

I/O Sub-System

PC3000 Real Time Operating System

is the basic overhead in communicating with the Rack Interface Module. In
addition, there is a 35µS overhead per external rack containing up to 8 digital
modules, and a 70µS overhead per external rack containing more than 8 digital
modules.

Channel I/O Usage

Modules can be split into their generic types of analogue or digital and inputs or
outputs. For instance, a Digital Input 14 channel contact closure module is treated
as a digital input.

The I/O bandwidth usage of each type of module is thus:

4 Channel Analogue Input -

500µS per channel used

4 Channel Analogue Output -

500µS per channel used

14 Channel Digital Input -

105µS per module, if in main rack

70µS per module, if in extension rack

12 Channel Digital Output -

105µS per module, if in main rack

70µS per module, if in extension rack

Note: The time used by analogue modules depends on the number of
channels in use, but the time used by digital modules is fixed.

Simple Example Calculation

The following worked example explains how to apply these figures in a simple
system.

The I/O configuration for the system is as follows:

Rack 1 Rack 2
AI4 AI4

AO4 AO4
DI14 DI14

DO12 DO12

I/O Sub-System

PC3000 Real Time Operating System6-10

All channels of the analogue modules are used.

The analogue I/O runs on the 100ms update rate, the digital on a 10ms update rate

Consider the analogue modules first.

There are 16 channels of analogue I/O (four for each module).

Each channel uses 500µS

Total analogue time is 16x500µS = 8000µS per analogue tick

The time used per digital tick is therefore:

8000µSx10mS(digital rate)/100mS(analogue rate) = 800µS per digital tick.

The main rack digital modules each take 105µS per tick.

Main rack time usage is 2x105 = 210µS

The overheads for the extension rack digital I/O can be broken down into fixed
overheads and module specific overheads.

 The fixed overheads are 250µS for a digital output in extension rack plus 250µS for
a digital input in an extension rack, and 35µS for 2 digital modules in an extension
rack.

Overheads are therefore 250 + 250 + 35 = 535µS

The input and output modules in extension racks each take 70µS per module. There
are two modules, hence there is an extra 140µS time used.

The total time used by the extension rack digital I/O is therefore 535+140=675µS
per tick.

The total time used per tick is:

800µS (Analogue)

+210µS (Main rack digital)

+675µS (Extension rack digitals) =1685µS per 10000µS tick.

As can be seen from the I/O bandwidth calculations, there are fixed overheads
associated with placing digital modules in extension racks. There is a separate
overhead for inputs and for outputs.

6-11

I/O Sub-System

PC3000 Real Time Operating System

Reducing I/O communications bandwidth usage
When using a large number of digital inputs or outputs, it is better to place only
inputs in one rack, and only outputs in another rack.

As a simple example assume there are 12 digital inputs and 12 digital outputs in
extension racks. The difference in bandwidth usage for a system with inputs and
outputs in different racks, and inputs and outputs mixed between racks can be
calculated. For either case, the time used per module is a constant of 70µS per
module, giving a total of 1680µS. Each rack also uses 70µS as it contains more than
8 digital modules.

This gives an overhead of 1750µS.

If the inputs and outputs are in different racks, each rack has a fixed overhead of
250µS for either inputs and outputs giving total bandwidth used as 2250µS. If inputs
and outputs are mixed in both racks, each rack has a fixed overhead of 500µS for
containing both inputs and outputs, giving total bandwidth used as 2750µS, or 20%
more time used.

Rule:

For large systems I/O Bandwidth may be optimised by placing inputs in one
rack and outputs in another rack.

I/O latency
The time between the state of a physical input sensor changing and the time taken for
the PC3000 control to system react is defined as the I/O Latency.

The data presented here provides an indication of the expected input/output latency,
or delay time, for various input and output combinations.

All data is based on a two task system with task rates of 10ms and 100ms.

In each case, the input I/O function block (i.e. the .PV parameter) is directly
soft-wired within the User Program to the output I/O function block (i.e. the .PV
parameter).

I/O Sub-System

PC3000 Real Time Operating System6-12

Digital inputs/outputs
The timing for a single digital input soft wired to a digital output is given in
figure 6-7.

Figure 6-7 Example of digital and output function blocks ‘wired’ together

Actual measured latency times are as follows:

Digital task Average latency Min latency Max latency
interval [ms] time [ms] time [ms] time [ms]

5 12 9 15
10 20 15 25
20 35 25 45
50 80 60 100

0ms 10ms

Tick

20ms 30ms

(Just missed)

DIGITAL INPUTS
READ READ

DIGITAL OUTPUTS
WRITTEN

(Read here)

(Function Block Update)

FB Execution

'PHYSICAL'
DIGITAL
INPUT'

DIGITAL INPUT
FUNCTION BLOCK
·PV

'PHYSICAL'
DIGITAL
OUTPUT'

DIGITAL OUTPUT
FUNCTION BLOCK
·PV

PERMORMANCE:

MAX LATENCY 3 Ticks
MIN LATENCY 1 Tick
TYPICAL 1.25 - 2.25 Ticks
MIN PULSE WIDTH > 1 Tick

MAX. FREQUENCY 1/2 x Tick

+ Filter or other
hardware delays

6-13

I/O Sub-System

PC3000 Real Time Operating System

Analogue inputs/outputs
The timing for an analogue input/output pair is represented below. The analogue
input module includes a four stage rolling average filter which imposes a delay on
the signal. Additionally, the sampling rate of 100ms imposes an additional 100ms
delay giving 450ms plus the associated execution delays.

0ms +100ms

Tick

+200ms +300ms

ANALOGUE
INPUT READ

ANALOGUE OUTPUT
READ

(Function Block Update)

FB Execution

'PHYSICAL'
ANALOGUE
INPUT'

ANALOGUE INPUT
FUNCTION BLOCK
·PV

'PHYSICAL'
DIGITAL
OUTPUT'

ANALOGUE OUTPUT
FUNCTION BLOCK
·PV

+350ms

approx. 450ms
FILTER = 350ms

CONVERT = 100ms

Figure 6-8 Example of analogue input and output function blocks 'wired’ together

Actual measured latency times are as follows:

Analogue task Average latency
interval [ms] time [ms]

100 800
200 1400

I/O Sub-System

PC3000 Real Time Operating System6-14

Composite timing
The following timings cover mixed analogue/digital applications. Data is based on
time measured from change of state at input to corresponding change at output.

Digital input to analogue output
Actual measured latency time, digital input to output (0 to 100%)

Example assumes change of Process_Val following a change in state at the digital
input.

Analogue task Digital task Average Min latency Max latency
interval [ms] interval [ms] latency time [ms] time [ms]

time [ms]
100 10 150 100 200
100 20 140 90 190
100 50 110 60 160

Analogue input to digital output
Actual measured latency time, analogue input to digital output. Example assumes
change of digital output state following input exceeding 50% of full scale.

Analogue task Digital task Average Min latency Max latency
interval [ms] interval [ms] latency time [ms] time [ms]

time [ms]
100 10 650 600 700
100 20 700 650 750
100 50 800 750 850
200 10 1000 900 1100
500 10 900 700 1100

Timing for fast analogue input and output function blocks
Times are similar to those associated with digital I/O since this module runs in the
digital function block task. All measurements are based on the cut off frequency of
the filter set at 160Hz.

Analogue task Digital task Average Min latency
interval [ms] interval [ms] latency time [ms]

time [ms]
100 68 20 115
10 20 15 25

6-15

I/O Sub-System

PC3000 Real Time Operating System

I/O error codes
The following system errors are associated with the PC3000 I/O system. For a full
list of system errors refer to Appendix B.

Error Error description Field 1 Field 2
code
305 & 307

Note 1. The first digit (from the left) is the rack number (1 to 8) and the following
two digits are the slot number (1 to 12).

Error Communication with an I/O
module has failed after 3 retries.

Cause This most likely occurs when
a module is removed or inserted
but may also occur if a module
resets, possibly due to its local
watchdog. It may also be caused by
RFI noise within the rack or on a
multi-rack system in the inter-rack
connections. A repeated failure
from the same module is likely to
indicate a hardware fault.

Solution If a single module is
consistently giving errors then it is
likely there is a module failure and
it should be replaced.

Random errors indicate RFI noise so
screening and cabling may need to
be improved.

Module
address 1

Diagnostic
information

I/O Sub-System

PC3000 Real Time Operating System6-16

Note 2. A time proportioned digital output may be classified as analogue in this
context.

Error Error description Field 1 Field 2
code
308 00Error Digital I/O system over-

loaded.

Cause On initialisation, the I/O
handler detected that there would
not be sufficent bandwidth on the
parallel bus to communicate with
the number of modules defined in
the User Program.

Solution Use less digital I/O or
extend the interval of the fastest
task.

Error Analogue I/O system
overloaded.

Cause On initialisation the I/O
handler detected that there would
not be sufficient bandwidth on the
serial bus to communicate with the
number of modules defined in the
User Program.

Solution Use less analog I/O or
extend the interval of the slower
IOH (See Appendix C, paragraph
Allocation of handlers to task.
Appendix C, Scheduler overheads,
performance and limitations).2

309 0 0

Cont iPC3000 Real Time Operating System

Chapter 7

REAL TIME TASK SCHEDULER

Contents

Overview .. 7-1

Task scheduling ... 7-1

Tasks .. 7-1

Scheduler .. 7-2

Operation of the scheduler .. 7-4

Using default tasks .. 7-4

The default task function blocks 7-5

Default allocation of function blocks to tasks 7-5

Overrunning ... 7-5

Task degredation when overrunning 7-7

Task function block diagnostics 7-7

The Act_Interval parameter .. 7-7

The Overrun and Overrun_Cnt parameters 7-8

The Exec_Time parameter .. 7-8

Changing task parameters ... 7-9

Changing the default intervals .. 7-9

Rules when changing task intervals 7-9

Recommendations for changing task intervals 7-10

Task configuration restrictions 7-11

Allocating function blocks and sequencing to other tasks 7-12

Allocating function blocks to tasks 7-12

Changing the sequential function charts task allocation . 7-12

7-1

Real Time Task Scheduler

PC3000 Real Time Operating System

Overview
The multi-tasking system supported by the Real Time Task Scheduler (referred to as
the Scheduler) provides flexible control over the execution of function blocks and
sequences in the User Program. A User Program can be configured to have between
two and seven tasks. Tasking is controlled and configured using Task function blocks
which also provide detailed diagnostic information on task behaviour and support for
failure detection using a watchdog facility.

Multi-tasking is provided for the following reasons :

To allow processor execution of certain function blocks within the User Program
to execute at a rate that matches the required responsiveness of the system.

For example, a counter function block wired to a digital input used to count
pulses from a position sensor may need to be scanned every 5ms.

To allow function blocks that do not require fast execution, to be run in slower
tasks so that processor time can be used more effectively.

For example, some PID function blocks for temperature control where there are
long time constants, may be run in a 500ms task instead of the default 100ms
task.

If specific problems are encountered when using multi-tasking refer to paragraphs on
the Typical Tasking Problems and Solutions and Rules and guidance for Multi-
Tasking, within this Chapter.

For further details on the Scheduler behaviour refer to Appendix C, Scheduler
Overheads, Performance and Limitations. Typical Task configurations are given in
Appendix D.

Task scheduling
The following paragraphs give an overview on Scheduler operation and task
behaviour.

Tasks
A Task is a group of operations which are regularly repeated when a User Program
is running. For example a group of function blocks, their wiring and associated
Sequential Function Charts (SFCs) can be configured to run in a designated task.
Each task has associated parameters which control its priority and the rate at which it
is repeated.

For example, a User Program can be configured to have a fast task that executes once
every 10ms and a slower task that executes every 100ms. In this case, every function

Real Time Task Scheduler

PC3000 Real Time Operating System7-2

block instance in the User Program and the associated wiring will be allocated to
either of these two tasks. The Sequential Function Charts (SFCs) will typically be
allocated to the slower 100ms task.

Scheduler
The Real Time Task Scheduler is associated with system software within the PC3000
which selects which task is to run at any particular time.

Figure 7-1 shows an example of scheduling performed on a three task User Program.

7-3

Real Tim
e Task Scheduler

PC
3000 Real Tim

e O
perating System

10ms 20ms 30ms 40ms
0ms

50ms 60ms 70ms 80ms

10ms Task 50ms Task 100ms Task Tick

90ms
100ms

110ms 120ms 130ms 140ms 150ms 160ms 170ms 190ms
200ms

210ms 220ms180ms 230ms

Figure 7-1 The scheduling of three tasks

Real Time Task Scheduler

PC3000 Real Time Operating System7-4

Operation of the scheduler
The shaded regions in figure 7-1 show which task is running at any given time. The
dotted lines show where a task is ‘ready’ but not actually running, i.e. the task’s
execution has been held up while a higher priority task is run. The Scheduler allows
interruption of a lower priority task by a higher priority task using a real-time
scheduling technique known as “pre-emptive scheduling”.

The vertical arrows in figure 7-1 indicate timing points at which the execution of the
tasks is interrupted. At these points, known as the basic tick , the Scheduler decides
which task should run next. The highest priority task is always the most frequently
re-scheduled task and its periodicity defines when the basic tick occurs. In figure 7-1
the basic tick rate is 10ms.

Note: With the PC3000 Scheduler strategy, any task can be inter-
rupted by a higher priority task. No task can interrupt the highest
priority task.

After each basic tick, the Scheduler begins running the highest priority task. This
may interrupt a lower priority task in which case, the lower priority task’s “context”
is stored so that it may be resumed from the same point later. In the figure 7-1
example, after every fifth basic tick, the 50ms task is scheduled (made ‘ready’ to run)
and similarly after every tenth basic tick, the 100ms task is scheduled. Being
scheduled implies that at the next available opportunity they will be run. When the
10ms task is completed the Scheduler is invoked and it then selects the next lower
priority task which is ‘ready’ (if there is one). For example, on the first tick in
figure 7-1, (shown at 0 ms), the 10ms task is run. Once it has completed, the 50ms
task takes over for the rest of the tick.

Similarly when the 50ms task is completed (after 18ms), the 100ms task is run.
When no other tasks are ‘ready’ and the running task completes, the Scheduler
simply idles until the next basic tick (78ms, 84ms and 94ms.).

Using default tasks
By default, the Programming Station always configures a User Program to execute in
two tasks, 10ms and 100ms which are controlled by associated Task Function
Blocks. You are advised to use the default tasks if the User Program does not have
any special performance or loading requirements.

Refer to the PC3000 Function Block Reference for further details on the Task
Function Block.

7-5

Real Time Task Scheduler

PC3000 Real Time Operating System

The default task function blocks
The default Task Function Blocks for tasks designated Task_1 and Task_2, are
shown in figure 7-2 with their associated parameter cold start values.

Task_1

No

T#10ms

0

0

T#5s

Exec_Time

Act_Interval

Overrun

Overrun_Cnt

Single

Interval

Priority

Overrun_Cnt

Wdog_T ime

Task

Task_2

No

T#100ms

1

0

T#5s

Exec_Time

Act_Interval

Overrun

Overrun_Cnt

Single

Interval

Priority

Overrun_Cnt

Wdog_Time

Task

Figure 7-2 The default task function blocks

Default allocation of function blocks to tasks
Each function block instance within a PC3000 User Program is assigned to a task
controlled by a designated Task Function Block.

Function block instances may be allocated to any task. By default, when function
block instances are created, they are allocated to Task_1 or Task_2 corresponding to
the default 10ms and 100ms tasks respectively.

Note: The allocation of function blocks to tasks in earlier releases of
PC3000 which did not support multi-tasking, was fixed for each
function block type. For example the Digital_Out function block
instances were allocated to the 10ms task and the Analog_Out
function block instances allocated to the 100ms task.

Overrunning
A task is said to overrun if it cannot be scheduled at the requested interval. When a
task overruns the Scheduler must degrade the priority of all other tasks so that the
task execution completes. Figure 7-3 shows the scheduling of a two task User
Program. The Scheduler attempts to maintain the ratio between the number of
executions of the different priority tasks in this situation.

Real Tim
e Task Scheduler

PC
3000 Real Tim

e O
perating System

7-6

10ms 20ms 30ms 40ms
0ms

50ms 60ms 70ms 80ms

10ms Task 100ms Task Tick

90ms 120ms 130ms 140ms 150ms 160ms 170ms 190ms
200ms

220ms180ms 230ms
100ms

210ms

 Overunning 100ms task is given highest
priority

Scheduling of other tasks is delayed
until overunning 100ms task has completed.

This causes 10ms task to overun also.

 Overunning 100ms task terminates and is scheduled again immediately

100ms task should have re-started
here but previous execution has overrun

110ms

Figure 7-3 Scheduling of overrunning tasks

7-7

Real Time Task Scheduler

PC3000 Real Time Operating System

Task degradation when overrunning
If a task has not completed when it is scheduled to begin running again, the
Scheduler automatically increases its priority above all other tasks. This has the
effect of making the Scheduler ignore basic ticks until that task has completed. Once
the overrunning task has completed, it is then immediately re-scheduled but at its
normal priority. The ratio of the number of executions of different tasks is always
maintained by this strategy.

Note: In the figure 7-3 example the 10ms task overruns once per
execution of the 100ms task because it must wait for the 100ms task
to complete.

Function blocks such as PID will adjust the sample time used for internal calculations
to account for the task interval being longer due to overrunning.

The timing of STEP durations i.e. the T parameter, will be adjusted to account for
task overruns to maintain timing accuracy.

Caution

Overrunning should be regarded as an exceptional situation and User
Programs should be designed to avoid overruns where possible.
Control accuracy and performance will be degraded if a User
Program continually executes with overruns.

 Task function block diagnostics
Task function blocks provide parameters to monitor system loading by the User
Program. The PC3000 Function Block Reference has further details on the Task
Function Block.

The Act_Interval parameter
The Act_Interval output from the Task function block indicates the measured
interval which was achieved by the system for the last execution of the task.

Normally this would be equal to the Interval requested but if the PC3000 is unable
to execute all the function blocks in the required time, it may be extended. The
Exec_Time parameter can be used to identify which task is causing the main
processor loading, see paragraph The Exec_Time Parameter.

The Act_Interval is measured in terms of basic ticks so it will always be a multiple
of the fastest tasks interval. The Act_Interval is measured as the difference between
the tick in which it was scheduled for this execution and the tick in which it was
scheduled for its last execution.

Real Time Task Scheduler

PC3000 Real Time Operating System7-8

The Overrun and Overrun_Cnt parameters
The Overrun parameter is Yes (i.e.1) when the Act_Interval is greater than the
Interval, i.e. the task is overrunning. The Overrun_Cnt is a count of the number of
executions of the task which have overrun. The overrun count can be cleared at any
time by writing 0 to this parameter from the Sequential Function Charts.

The Exec_Time parameter
The Exec_Time output shows the execution time of the task in integer milliseconds
and can be a useful diagnostic parameter to show the system loading, i.e. which task
is taking a high percentage of processor time and is causing a particular User
Program to overrun.

The value of Exec_Time as a proportion of the Interval is known as the processor
utilization. The following equation can be used to obtain the percentage of processor
utilization for a task.

processor utilisation = Exec_Time x 100%

Interval

This only calculates the processor utilization for the execution of the given task. It
does not include scheduling overheads etc. or loading due to executing other tasks. It
does however include the execution of any communications or Real Time Clock
interrupt service routines which may interrupt the tasks’ normal execution and any
system handlers which are run for that task, see Appendix C Scheduler Overheads,
Performance and Limitations. Adding all the tasks’ processor utilizations together
gives a good indication of overall system loading. If this exceeds 100% then the
PC3000 will certainly overrun. Below 100% the PC3000 may still overrun because
of the overheads of scheduling.

Caution

It is recommended that the total processor utilization for all tasks
should not exceed 80% and ideally should be less than 50%.

Keeping the total processor utilisation below 50% will allow time for scheduling
overheads and some margin of error for variations in processing time from execution
to execution. The percentage error in this calculation will be significant when the
Exec_Time is small (because the measurement is only to the nearest millisecond). In
User Programs which are close to overrunning it may be useful to take this error into
consideration by taking the highest value for Exec_Time.

7-9

Real Time Task Scheduler

PC3000 Real Time Operating System

Changing task parameters
The following parameters modify the task behaviour; Interval, Priority and
Wdog_Time. These configuration parameters can be changed at any time but they
only have an effect on the task at the time when the User Program first begins
running, i.e. during the INITIALISING operating mode, see paragraph Modes of
Operation. Because the configuration parameters can be unexpectedly reset, due to a
watchdog or power failure, it is essential to build the task configuration parameter
values into the User Program as cold start values.

It is possible to change these parameters when the User Program is in RESET mode,
(mode will change to HALTED after any parameter is modified) and run the
program in order to experiment with different values.

Note: The Single input parameter of the Task function block is not
yet implemented and is included for future expansion; it should be
left at its default value.

When an attempt is made to run a User Program with an illegal task configuration the
PC3000 will remain in the RESET or HALTED mode and an error will be logged in
the system error log. A list of the errors which can be logged by the scheduling
system are shown in paragraph Scheduler System Errors.

Changing the default intervals
The task Interval can be changed to either slow a task re-execution rate in order to
avoid task overruns or increased to improve system responsiveness.

Rules when changing task intervals
When changing the task intervals note the following:

1. The fastest task cannot be any faster than 5ms or slower than 65ms.

2. The next fastest task cannot be any slower than 20 times the Interval of the
fastest task.

3. Each task’s interval must be an integer multiple of the next fastest task’s interval.
In a two task User Program, the slowest task’s interval should be an integer
multiple of the faster task, e.g. 100ms and 10ms.

4. PIM2, Analog_In, Analog_Out, PI_Smpl_Ctr, Analog_Out and T_Prop_Out
function blocks should be run with a minimum Interval of 100ms or greater.

Real Time Task Scheduler

PC3000 Real Time Operating System7-10

Recommendations for changing task intervals
When changing task intervals it is necessary to consider the processor utilization.
Consider the two default tasks summarised in the following table:

Interval Exec_Time Processor Utilisation

10ms 4ms 40%
100ms 53ms 53%

Total 93%

Table 7-1 An overloaded user program

The example in table shows a User Program which is probably overrunning and is
certainly not leaving sufficient margin of free processing time for scheduling
overheads or task execution time variation. To improve the program execution, the
total processor utilization by the tasks should be reduced to less than 80%. This can
be done by increasing the interval time of either or both of the tasks. tables 7-2 to
7-4 show the effect of slowing down the faster task (table 7-2), slowing down the
slower task (table 7-3) and slowing down both tasks (table 7-4).

Interval Exec_Time Processor Utilisation

20ms 4ms 20%
100ms 53ms 53%

Total 73%

Table 7-2 Slowing down the faster task to stop overrunning

Interval Exec_Time Processor Utilisation

10ms 4ms 40%
130ms 53ms 38%

Total 78%

Table 7-3 Slowing down the slower task to stop overrunning

7-11

Real Time Task Scheduler

PC3000 Real Time Operating System

Interval Exec_Time Processor Utilisation

12ms 4ms 33%
120ms 53ms 44%

Total 77%

Table 7-4 Slowing down both tasks to stop overrunning

Any of the above strategies would stop the User Program overrunning and provide a
reasonable margin for execution time variations.

Task configuration restrictions
By slowing down the faster task (table 7-2) a restriction is introduced by rule 3 in
paragraph Rules and guidance for Multi-Tasking. The slower tasks interval must be
an integer multiple of the faster tasks interval (as well as being >5ms and <65ms
because of being the fastest task). If the 100ms tasks interval is to remain unchanged
then the interval for the fastest task may only be 5ms, 10ms, 20ms, 25ms or 50ms,
i.e. a factor of 100ms. If these values are not suitable then the slower task interval
should be changed. For example, if the fastest task interval chosen was 16ms then
the slower task interval could be changed to 96ms or 112ms.

Compare the task processor utilizations before and after slowing down the faster task
(tables 7-1 and 7-2).

When the task intervals are 10ms and 100ms, the task processor utilization is
reasonably balanced at 40% and 53% respectively. After slowing down the faster
task, the processor utilizations are 20% and 53% which is not so evenly balanced. It
may be necessary to keep the slower task at 100ms because of limitations imposed by
the process. In which case this would have to be the overriding consideration. Where
possible however, keeping the processor utilization evenly spread across the tasks
does reduce the likelihood of the User Program overrunning by giving equal margins
for variation in each tasks execution time. In the example, task Interval values 10ms
and 130ms (table 7-3) is an ideal configuration in this respect.

In applications where there is no significant restriction set by the process on interval
times, it is good practice to have plenty of margin in task execution times. In this
example, Interval times of 20ms and 200ms would be reasonable. This gives
margins for task execution time variation and allows for some expansion of the User
Program without extending the intervals.

Note: It is possible to set both tasks to the same interval e.g. 65ms.
In which case, there may be delays introduced when wiring is used
between the two tasks. For further details see paragraph Parameter
passing between Tasks, in Appendix C, Scheduler Overheads,
Performance and Limitations.

Real Time Task Scheduler

PC3000 Real Time Operating System7-12

Allocating function blocks and sequencing to other tasks
Changing the task intervals as described in the last paragraph may be sufficient to
alleviate problems of overrunning or insufficient response time in some simple
applications. In other cases, it may be necessary to modify the scheduling of the User
Program by changing the execution of selected instances of function blocks from
their default task to an alternative task.

Allocating function blocks to tasks
It is possible to change the function block task allocations from the PC3000 Program-
ming Station (refer to the PC3000 Programming Station User Guide or PC3000/
Microcell User Guide). The function block instance to task allocation is fixed when
the User Program is built and cannot be manipulated in any way after the User
Program has been downloaded into the PC3000.

Changing the sequential function charts task allocation
Changing the task allocation of any Step or Macro function block instance will
change the task for the execution of all Sequential Function Charts (SFCs) in the
User Program.

Note: All Sequential Function Charts execute in the same task.

Guidance on changing function block task allocations
The execution overheads of different tasks can be modified by allocating selected
function block instances to run in different tasks. This may be necessary to alleviate
overrunning problems by slowing down tasks with unnecessarily fast execution and
to improve control of the system by speeding up critical control.

When allocating function blocks to tasks, you are advised to group function block
instances which need to run at similar rates. This is a useful tactic because execution
rates usually depend on the process being controlled and not on the functionality of
the blocks used to control the process. For example, a Digital_In function block,
which is used to detect pulses for a counting application, may need to be run with a
10ms interval in order to catch every pulse. In contrast, where an input is connected
to a ‘START’ button, a 100ms interval would normally be quite adequate.

7-13

Real Time Task Scheduler

PC3000 Real Time Operating System

Figure 7-4 shows a simple example of instances of the Digital_In function block
allocated to different tasks.

Fast

T#8ms

Task

Interval

Cnt_Plse

Digital_In

Process_Val

Comp_Cnt

Up_Counter

Clock Count_Val

Slow

T#160ms

Task

Interval

Start

Digital_In

Process_Val

Running

Bistable_SD
Set

Stop

Digital_In

Process_Val

Reset

Q_Output

Figure 7-4 Example using the same function block type in different tasks.

When changing task allocations, the processor utilizations for each of the tasks
should be balanced. By varying both the function block task allocations and task
intervals, it is possible to design a balanced multi-tasking User Program.

As stated in paragraph Changing the Default Intervals, it is advisable to leave
sufficient free processor execution time when designing a User Program to minimise

Real Time Task Scheduler

PC3000 Real Time Operating System7-14

the risk of overruns. Evenly spreading the loading across the tasks will also
minimise the risk of overruns.

Avoid allocating function blocks or wiring which involve calculations with decimal
floating point parameters (i.e. REALs) in a fast task. Each floating point calculation
takes approximately 70µs which can be a significant overhead if the task interval is,
for example, 5ms.

The minimum interval for Analog_In, Analog_Out, T_Prop_Out , PIM2 and
PI_Smpl_Ctr function blocks is 100ms. If faster analogue inputs or outputs are
required then Fast_An_In, I_Fast_An_I or Fast_An_Out can be used with the
appropriate module up to a 5ms Interval. Avoid allocating too many Fast_An_In or
Fast_An_Out function blocks with task intervals faster than 50ms because they
perform floating point calculations which use up processor execution time.

Adding more tasks
Generally most User Programs will only require two tasks but the PC3000 can
support up to seven, if required.

New tasks are added simply by creating new Task function block instances. When
new Task function blocks are added, the Interval and Priority default values are set
according to the number of tasks, as shown in table 7-5.

Task instance Interval Priority

1st 10ms 0
2nd 100ms 1
3rd 500ms 2
4th 1s 3
5th 5s 4
6th 10s 5
7th 30s 6

Table 7-5 Default task intervals and priorities

Rules and guidance for introducing more tasks
In table 7-5 the task Priorities are in the same order as the task Intervals. This type
of configuration is known as Rate Monotonic.

Caution

In order to avoid unexpected side effects do not change the task
intervals or priorities such that they are no longer in accending order.

7-15

Real Time Task Scheduler

PC3000 Real Time Operating System

For example, task configurations as summarised in tables 7-6 and 7-7 which are rate
monotonic will function correctly, yet the task configuration as shown in table 7-8
which is not rate monotonic, may operate incorrectly. In table 7-7 a third task has
been introduced and set to 50ms interval but in order to maintain the priority ordering
in line with the interval order, the priorities of tasks 2 and 3 have been swapped.
Further details of the problems of non-rate monotonic task configurations can be
found in paragraph Changing Priorities, in Appendix C, Scheduler Overheads,
Performance and Limitations.

Task Interval Priority

Task_1 10ms 0
Task_2 100ms 1
Task_3 500ms 2

Table 7-6 Example, three task configuration

Task Interval Priority

Task_1 10ms 0
Task_2 100ms 2
Task_3 50ms 1

Table 7-7 Example, alternative three task configuration

Task Interval Priority

Task_1 10ms 0
Task_2 100ms 1
Task_3 50ms 2

Table 7-8 Example, non-rate monotonic configuration

Caution

A User Program should not be configured using too many tasks
because each new task will introduce memory and execution time
overheads.

Real Time Task Scheduler

PC3000 Real Time Operating System7-16

Task watchdog
The watchdog facilities built into the PC3000 are designed to detect program
mal-functions resulting from faulty task configuration or internal data corruption.
The latter should be a rare occurrence caused by some form of excessive external
electromagnetic or radio frequency interference (RFI). Consult the PC3000
Hardware Reference for details on installation guidelines to avoid RFI. Once a
watchdog has been detected, the PC3000 can take action to re-initialise and continue
running.

Task watchdog operation
The user task watchdog is configured by the Wdog_Time parameter on the task
function block. This parameter is only read when the User Program begins running.
Altering the parameter once the User Program is running will have no effect. The
Wdog_Time defines a time by which a task should finish execution after it has been
scheduled to run, i.e. it defines a task finish deadline.

If the task is not scheduled in this period or fails to finish, the PC3000 system will be
forced to reset.

A system error 804 see paragraph Scheduler System Errors, is logged indicating
which task has run beyond the watchdog period. During User Program re-initialisa-
tion, other system errors may be added to the system error log.

Disabling the task watchdog
It may be useful to completely disable a user task’s watchdog during User Program
commissioning. This can be done by setting the Wdog_Time to 0ms.

Caution

Extreme care should be taken when disabling the task watchdog. It
will remove vital protection from the task making certain task failures
very difficult to detect.

Typical tasking problems and solutions
The most frequently encountered problems with multi-tasking User Programs
together with suggested solutions, giving references to relevant paragraphs of this
manual, are:

The User Program will not run - The cause is probably an illegal task
configuration. Check the system error log which should show the reason for the
illegal task configuration. Refer to paragraph, Scheduler System Errors for a list of
all system errors associated with the multi-tasking system.

7-17

Real Time Task Scheduler

PC3000 Real Time Operating System

Unexpected User Program Watchdog Resets- Check that the Wdog_Time in the
task function blocks are not too short and extend durations if necessary, see
paragraph Task Watchdog.

Tasks are not Rate Monotonic- If the tasks are not rate monotonic then overrunning
and watchdog resets are likely to occur, see paragraph Rules and guidance for
introducing more tasks. If it is necessary to have non-rate monotonic tasks then
extend the task intervals in order to stop the overrunning, see paragraph Changing
Priorities in Appendix C, Scheduler Overheads, Performance and Limitations.

Unexpected result from a Wiring or SFC Calculation- If a pair (or more) of
parameters from another task are referenced, they may not be coherent values
(e.g. from the same execution of that task). For more details see paragraph Changing
the default Intervals and Appendix C, Scheduler Overheads, Performance and
Limitations.

I/O Fails to operate correctly- Some I/O will not operate at speeds faster than
100ms. Check in the PC3000 Hardware Reference whether the associated function
blocks are being run at a rate which is too fast; see page 7-9, Rules when changing
Task Intervals.

Task stops operating and PC3000 does not Watchdog - Check the Wdog_Time
parameter of the task function blocks. It is probably too long to detect a mal-function
in reasonable time and should be shortened. Alternatively if the Wdog_Time is 0ms
then the task watchdog has been turned off. Unless commissioning a User Program,
the task watchdog should always be on. For more details see page 7-16, Task
Watchdog.

User Program overruns although processor utilization is low- This situation will
occur when tasks are not rate monotonic. See paragraph Rules and Guidance for
introducing more Tasks and paragraph Changing Priorities, Appendix C Scheduler
Overheads, Performance and Limitations.

Task Interval, Priority Or Wdog_Time seem to be incorrect- The Interval,
Priority and Wdog_Time parameters of the task function block are only read when
the User Program begins running; see page 7-9, Changing Task parameters.

PC3000 does not re-start after a Watchdog reset- The PC3000 may fail to re-start
after a watchdog or power failure even though it has a suitable start-up strategy

Real Time Task Scheduler

PC3000 Real Time Operating System7-18

because of an illegal task configuration. It is important to ensure that the cold start
values of a User Program are valid or this problem will recur.

Unexpectedly large Exec_Time for a Task- The execution time for a task may be
due to overheads arising from the System Handlers which are automatically assigned
to tasks by the Scheduler. For full details of these see Appendix C, Scheduler
Overheads, Performance and Limitations.

Unexpectedly Long Propagation Delays- Propagation delays can be introduced
when passing parameters between tasks, see Appendix C, Scheduler Overheads,
Performance and Limitations.

Rules and guidance for multi-tasking
1. The interval of the fastest task must be greater than or equal to 5ms and less than

or equal to 65ms.

2. The interval of the second fastest task must be no more than 20 times longer than
the interval of the fastest task.

3. Each task’s interval must be an integer multiple of the interval of the next
fastest task.

4. The total of all the task processor utilizations should be less than 80% and
preferably less than 50% .

5. The values of the configuration parameters of a task function block (Interval,
Priority and Wdog_Time) should be built into the User Program as cold start
values except while experimenting with different task configurations.

6. The Single parameter of the Task function block is for future enhancement and
should not be changed.

7. Sequential Function Charts (SFCs) can only execute in a single task.

8. The allocation of function blocks to tasks is fixed when the User Program is
built on the Programming Station, i.e. it is not possible to change task allocations
once a User Program has been down-loaded into the PC3000.

7-19

Real Time Task Scheduler

PC3000 Real Time Operating System

9. Limits of execution intervals for individual function blocks should be
considered when changing the default values.

For example, Analog_In, PI_Smpl_Ctr, Analog_Out and T_Prop_Out
function blocks should be run with a minimum Interval of 100ms.

Note: Most analogue inputs and outputs should not be run in a task with an
interval less than 100ms. Check the PC3000 Hardware reference for details.

10. Avoid calculations using floating point (i.e. REAL values) in fast tasks;
floating point calculations can be a significant overhead and may cause
overrunning to occur.

11. There should be at least two and no more than seven tasks.

12. The names of tasks can be changed by using the normal function block
renaming facilities.

13. The fastest task should be the highest Priority.

14. Having task priorities which are not in the same order as the task intervals
(i.e. non-rate monotonic) may cause unexpected side effects.

15. It is possible to have two tasks with the same interval and/or priority if
required.

16. A User Program will not begin running if its task configuration is illegal.
The PC3000 will remain RESET or HALTED and an error will be logged
in the system error log. (See Appendix B System Errors)

17. Function block wiring is always evaluated in the same task as the destination
function block.

18. In function block wiring, there is no guarantee that the value of parameters
from function blocks allocated to other tasks are coherent i.e. all come from
the same task execution.

Real Time Task Scheduler

PC3000 Real Time Operating System7-20

Scheduler system errors
The following errors may be logged by the Scheduler in the system error log.

For a full list of System Errors see Appendix B.

Where task numbers are specified in Field 1 or Field 2, the numbers refer to the
position in the function block instance list, the top of the list being task number 1, the
second from the top task 2 etc.

Error Description Field 1 Field 2
Number
800

801

802

803

804

TOO MANY TASKS There
are too many tasks defined.
The maximum number is 7.

FASTEST TASK TOO SLOW
The fastest task's interval is too
slow. The fastest task interval
must be no slower than 65ms.

FASTEST TASK NOT
HIGHEST PRIORITY The
fastest task is not the highest
priority. The fastest task must
have a higher priority (lower
number) than any other task.

TASKS NOT SIMPLY
PERIODIC The tasks are not
simply periodic. Each task's
interval must be an integer
multiple of the next fastest
tasks interval.

USER TASK WATCHDOG A
task has not completed within
the specified Wdog_Time .

n/a

Fastest
task
number

Fastest
task
number

Slower
task
number

Task
number

n/a

n/a

n/a

Faster task
number

Program
counter

Cont iPC3000 Real Time Operating System

Chapter 8

MEMORY USAGE

Contents

Overview .. 8-1

Downloading source code ... 8-2

Extending on-board memory .. 8-2

Downloadable function blocks 8-2

Source code in slot 2 memory .. 8-3

8-1

Memory Usage

PC3000 Real Time Operating System

Overview
The LCM on-board memory that is fitted to the mother board, is used to hold the
compiled and built User Program and associated Source Code if required. If more
memory is required, extra memory can be fitted to slots 1 and 2 using RAM daughter
boards. The memory regions used in the LCM are depicted in figure 8-1.

SYSTEM

USER PROGRAM

SOURCE CODE

Note 5

NOT ADDRESSABLE

FUNCTIONS BLOCK
LIBRARY

SOURCE CODE 4

2

3

1
PC3000ORG

SLOT 2

SLOT 1

ON BOARD
MEMORY

1) The User Program is loaded from the
memory location PC3000ORG.

2) A downloadable Function Block Library is
loaded from the base of RAM slot 2.

3) Source Code is loaded first upwards from
the free space available above the User
Program.

4) Source Code continues to be loaded
downwards from the end of the RAM slot 2.

5) If Slot 1 is fitted, User Program and Source
Text can be loaded upwards into Slot 1; it is
contiguous with on board memory.

Figure 8-1 Memory (RAM) layout

The LCM non-volatile memory (RAM) is used for holding the following :

User program Always downloaded from Programming Station

Source Code Optionally downloaded from Programming Station

Additional Function
Block Library

Further details, on the available memory sizes and on fitting daughter boards ,are
given in the PC3000 Hardware Reference.

The User Program is always loaded from a base address defined by symbol
PC3000ORG. This varies for different releases of the PC3000 system software
(firmware) and is normally set-up automatically by the PC3000 installation software.

Note: If the PC3000 firmware is changed on-site, and the Program-
ming Station software is not re-installed, it is possible to override the
original PC3000ORG value by defining the new value in the

Memory Usage

PC3000 Real Time Operating System8-2

AUTOEXEC.BAT file. Release notes will give details on how to do
this. If new Program Station software is installed, the PC3000ORG
symbol should be removed from AUTOEXEC.BAT.

Downloading source code
The Source Code for the User Program can optionally be loaded and retained in
non-volatile memory. It can be uploaded (copied) to the Program Station at any time,
for example, if there is reason to view or modify the User Program. It is cleared if a
different version of the User Program is downloaded. The Source Code is loaded into
memory starting from the end of the User Program area. Default Communications as
described in the Overview paragraph, provides parameters to read and write the
Source Code.

Note: The Source Code holds a complete definition of the User
Program including all function block wiring in Structured Text,
program comments, Sequential Function Charts and hardware I/O
configuration in a compact binary format. On the PS and Microcell
Programming Stations, this information is held in a file with the
extension .cfg. It is not possible to re-create a particular User
Program unless the Source Code is retained either in LCM non-
volatile memory or in a PC file.

WARNING

It is advised that a backup copy of the User Program .cfg file is
retained on disk because there is always a possibility that Source
Code held in non-volatile memory is lost, for example, by removing
the LCM and accidentally disconnecting the battery.

Extending on-board memory
By adding a memory daughter board to slot 1, extra space for a larger User Program
and Source Code can be provided.

Downloadable function blocks
The Programming Station provides facilities to build User Programs with function
blocks from an additional selected Function Block Library, i.e. in addition to the
standard library which is built into the system software. If an additional library is
required, a memory daughter board should be fitted to slot 2 to receive the
downloaded library. The downloaded function block library will be retained in
non-volatile memory until either, a different library is downloaded or it has to be
overwritten to make room for downloaded Source Code (see next paragraph).

8-3

Memory Usage

PC3000 Real Time Operating System

Source code in slot 2 memory
Source Code will overflow into the top of the memory in slot 2 and grow downwards
if there is no further free space above the User Program area. If the Source Code
cannot fit in the remaining space in slot 2, the Source Code download is aborted. If
the function block library is required by the current User Program, it will not be
overwritten by the Source Code. However, if the function block library is not
required, the Source Code will overwrite it, if the memory space is needed.

Cont. ii PC3000 Real Time Operating System

Real Time Task Scheduler

Contents (continued)

Guidance on changing function block task allocations 7-12

Adding more tasks .. 7-14

Rules and guidance for introducing more tasks 7-14

Task watchdog ... 7-16

Task watchdog operation .. 7-16

Disabling the task watchdog .. 7-16

Typical tasking problems and solutions 7-16

Rules and guidance for multi-tasking 7-18

Scheduler system errors ... 7-20

App. A-1

Terminology

PC3000 Real Time Operating System

APPENDIX A TERMINOLOGY

Basic Tick The regular timing pulse within the PC3000 which is
used as the basis for timing all scheduling.

COH Communications Handler, software responsible for
executing Default Communications.

Coherent Parameter values are said to be coherent when they
originate from the same task execution.

Cold Start A User Program has a cold start when all function block
parameter values are reset to their original values as
defined on the Programming Station.

FBH Function Block Handler, software responsible for
executing Function Blocks.

Function Block This refers to the association of a function block to
Instance task allocation with a specified task.

Indivisibly A task executes indivisibly when it is not interrupted by
the execution of another task.

Interrupt A signal into the CPU from external hardware. For
example the 1 second tick of a Real Time Clock which
causes an interrupt service routine to be called within the
68000 processor of the Local Controller Module.

Interrupt A routine which is called when an interrupt occurs, in
Service order to deal with the source of the interrupt.

Interval The period at which a task is scheduled to run is known
as the task interval.

I/O An abbreviation for Input/Output, values read in from
sensors and written out to actuators.

Terminology

PC3000 Real Time Operating SystemApp. A-2

IOC Input/Output Concentrator - a processor on board the
Local Controller Module responsible for the exchange of
I/O values within the I/O System.

IOH I/O Handlers, software responsible for transferringI/O
values to and from the PC3000 I/O system, via the
Input/Output Concentrator.

Overrun A task is said to have overrun if the actual interval
attained by the scheduler is greater than that requested.
i.e. Act_Interval>Interval.

Pre-emptive A ‘pre-emptive’ Scheduler is one which will interrupt a
lower priority task, which is already running, in order to
allow a higher priority task to run.

Priority The priority of a task is a parameter used to determine
which task should be run when a number of tasks are
ready to run. In PC3000, 0 is the highest priority and 6
the lowest.

Processor Processor utilization is the percentage of processor
Utilization execution time used by a specific task.

Rate A rate monotonic task configuration is a configuration
Monotonic where the task priority is based on its interval. The

shortest interval task has the highest priority with longer
interval tasks having successively lower priorities.

RAM Random Access Memory. The memory within a
computer which is used to store programs and data.

Real Time The clock within the PC3000 which keeps track of the
Clock date and time.

RFI Radio Frequency Interference - this refers to radiated
noise which may disturb the operation of a control
system or communications link.

App. A-3

Terminology

PC3000 Real Time Operating System

Scheduled A task is said to be scheduled when it is made ready to
run.

Scheduler The Scheduler is a the part of the PC3000 which controls
the execution of tasks on a periodic basis.

SEH Sequence Handler, software responsible for executing
SFCs.

SFC Sequential Function Chart, a graphical representation of
a sequence of steps and transitions, see PC3000 User
Guide.

Simply Tasks are said to be simply periodic if each task (except
Periodic the fastest) has an interval which is an integer multiple of

the next faster task, eg. task intervals 10ms, 50ms,
100ms, 200ms.

Task A task is a group of function block instances (and
optionally Sequential Function Charts) which are
executed on a periodic basis by the Scheduler.

Task Function The task function block is used to control and monitor
Block the scheduling of the task in which it is contained. Each

task contains and is controlled by one task function
block.

Task Ready A task is said to be ‘ready’ when it is due to be run. This
does not necessarily mean that the task will immediately
start to run because the pre-emptive Scheduler may
make it wait until a higher priority task ihas finished
running.

Source Code This contains diagnostic and textual information infor-
mation required by the PC3000 Programming Station to
re-create a particular User Program.

Terminology

PC3000 Real Time Operating SystemApp. A-4

User Program The compiled form of the program created on either the
PS or Microcell Programming Stations that embodies the
control strategy for a particular production process and
can be downloaded into the PC3000.

Warm Start A User Program has a warm start when all function
blocks continue execution with parameter values
retained from the time they last ceased execution, such
as when power failed. For example, the Process_Value
parameter of a PID will be set to the last value read from
the plant.

Watchdog A watchdog is a device for detecting when a program
mal-functions.

App. B-1

System Errors

PC3000 Real Time Operating System

APPENDIX B SYSTEM ERRORS
This appendix lists system errors which may be detected by the PC3000 system
software and are either registered in the system error log or returned as an ‘EE’
number via EI Bisync communications.

The system error log on the PC3000 stores the last 40 errors which have occurred
within the PC3000, see paragraph System Error Log, in the Chapter Real Time
System State Information.

System errors may be triggered by faults within the User Program, e.g. an illegal
arithmetic operation such as dividing a floating point value by zero, or may indicate
that there are major faults within the system. Faults in hardware modules may need to
be investigated by Eurotherm Service personnel.

Power fail/watchdog errors
There are two event codes which indicate when the system is powered down (400)
and when the system is re-started (499). Radio frequency interference (RFI) noise,
intermittent hardware faults or possibly a software problem may cause the PC3000
system to detect a failure by means of a watchdog. There are two watchdog codes -
401 and 804; error 804 indicates that a task watchdog has triggered a system reset,
error 401 indicates that the PC3000 system has failed to re-trigger the hardware
watchdog.

Error 804 followed by a 401 is normal, as the task watchdog uses the hardware
watchdog to restart the system. Immediately following the watchdog codes there will
be a system re-start event (499) indicating that an attempt has been made to clear the
fault. An occasional watchdog reset caused by system noise may be tolerable in
some systems as a suitable start-up strategy can be chosen to re-start the User
Program within seconds. If re-sets initiated by the watchdog occur frequently or
repeatedly the reason should be investigated. This may imply that RFI disturbances
should be reduced.

Mathematic operation errors
Errors in mathematics operations can occur within the function blocks, wiring and
sequence program of the User Program. In integer mathematics operations, only
division by zero is detected as an error. In floating point mathematics operations
more detail is given in field 1 of the system error log to identify the type of
mathematics function that caused the error (see Table 2). The three errors codes 500,
501 and 502 indicate different types of mathematics operation error (see Table 1).

System errors which are not referred to in the following tables, indicate a PC3000
internal system failure, and should be reported to Customer Services at Eurotherm
Controls.

System Errors

PC3000 Real Time Operating SystemApp. B-2

Table 1 Error codes
Error Code Error Description Field 1 Field 2

101 Error The User Program
checksum has failed

Cause
(1) This may be due to corruption
of the system by RFI noise etc.
(2) This may be caused by
downloading a user program
which has been built with
PC3000ORG set to the wrong
value. Refer to Chapter 8;
Memory Usaage.
(3) A user program which was
built on a system with
downloadable function blocks
installed may have been down-
loaded by a system which does
not have the same, or any,
downloadable function blocks
installed.
(4) The user program, may be too
large to fit in the available RAM
in the PC3000.

Solution
(1) Re-download the User
Program. If the error persists this
probably indicates a problem
with the build or download
process.
(2) Verify that the PC3000 is
correctly set on the programming
station then re-build the user
program.
(3) Install the correct
downloadable function block
library on the Programming
Station.
(4) If the user program is too
large install more RAM in the
PC3000 LCM.

Disagnostic
information

User
program
checksum

App. B-3

System Errors

PC3000 Real Time Operating System

Error Code Error Description Field 1 Field 2

305 & 307 Module
address 1

Diagnostic
information

Error Communication with an
I/O module has failed after 3
retries

Cause This most likely occurs
when a module is removed or
inserted but may also occur if a
module resets, possibly due to its
local watchdog. It may also be
caused by RFI noise within the
rack or on a multi-rack system in
the inter-rack connections. A
repeated failure from the same
module is likely to indicate a
hardware fault.

Solution If a single module is
consistently giving errors then it is
likely there is a module failure
and it should be replaced.
Random errors indicate a RFI
noise so screening and cabling
may need to be improved.

Note 1. The first digit (from the left) is the rack number (1 to 8) and the following
two digits are the slot number (1 to 12).

System Errors

PC3000 Real Time Operating SystemApp. B-4

Error Code Error Description Field 1 Field 2

308 0Error Digital I/O system
overloaded.

Cause On initialisation, the I/
O handler detected that there
would not be sufficient band-
width on the parallel bus to
communicate with the number
of modules defined in the User
Program.

Solution Use less digital I/O
or extend the interval of the
fastest task.

Error Analog I/O system
overloaded.

Cause On initialisation the
I/O handler detected that there
would not be sufficient band-
width on the serial bus to
communicate with the number
of modules defined in the User
Program.

Solution Use less analog I/O
or extend the interval of the
slower IOH (See Appendix C,
paragraph Allocation of
Handlers to Tasks. Appendix C,
Scheduler Overheads,
Performance and Limitations).

309 0

0

0

App. B-5

System Errors

PC3000 Real Time Operating System

Error Code Error Description Field 1 Field 2

400 0Error The system shut down

Cause Power failure was
detected

Solution If unexpected,
investigate reason for power
failure.

Error The system hardware
watchdog has timed out.

Cause This may be caused by
RFI noise, an intermittent
hardware fault, or a software
mal-function.

Solution If the error seldom
occurs, it is probably caused
by RFI noise or an intermittent
hardware fault. If it is caused
by a software fault, the error is
likely to be repeatable and the
diagnostic field will contain the
same or a similar value, each
time.

Error User Program cleared
on command

Cause The user has issued a
Clear User Program command
over Default Communications.

0

401 Diagnostic
information

0

0 0403

System Errors

PC3000 Real Time Operating SystemApp. B-6

Error Code Error Description Field 1 Field 2

404 Disagnostic
information

0Event User Program cleared
after start-up has been aborted.

Cause The system has failed to
carry on running for 30 seconds
after ten attempts to re-start,
and the system has therefore
cleared the User Program.

Solution The most frequent
cause is due to the User
Program being built with the
wrong function block
installation. Check that firmware
version and function blocks are
compatible.

Event The system was powered
up

Error A mathematics operation
on a floating point, (REAL) has
resulted in an infinite result.

Cause A mathematics
operation such as division by
zero has been performed which
gave an infinite result.
Once an infinity has occurred it
is likely that the infinity will
propogate throughout many
mathematics operations causing
many occurrences of the error.

Solutions Investigate the User
Program

499 0 0

500 Maths
operation
code 3

Diagnostic
information

Note 3. The Mathematics Operation Codes are listed in Table 2.

App. B-7

System Errors

PC3000 Real Time Operating System

Error Code Error Description Field 1 Field 2

501 Maths
operation
code 3

Note 3. The Mathematics Operation Codes are listed in Table 2.

Diagnostic
information

Error A floating point, (REAL)
mathematics operation was
performed with an illegal
operand

Cause A mathematics operation
has been performed on a value
which is not sensible such as
ASIN (IN:=2). Such an operation
will result in an IEEE NAN (similar
to an infinity) and it is likely that
this will propagate throughout
many mathematics operations
causing many errors to be
reported.

Solution Investigate the User
Program

Error A mathematics operation
on a floating point, (REAL) has
resulted in an overflow.

Cause A mathematics operation
has been performed which results
in a value which is too large to
be represented. Such an
operation will result in an IEEE
infinity and it is likely that this
will propagate throughout many
mathematics operations causing
a number of errors to be
reported.

Solution Investigate the User
Program

Maths
operation
code 3

502 Diagnostic
information

System Errors

PC3000 Real Time Operating SystemApp. B-8

510 Diagnostic
information
4

Program
counter

Error A mathematics
operation on a floatng point
(REAL) number has resulted in
a error. (LCM-Plus only)

Cause A mathematics
operation such as division by
zero has been performed
which caused an error.
Once an error has occured it
is likely that an infinite or
undefined result will propogate
further causing many
occurrences of the error.

Solution Investigate the User
Program to identify causes for
the error. Try running the
application without the
sequence program (User
program mode Seq-Held) to
determine whethe the error is
in the function blocks/wiring or
the sequence program.

Error Integer division by zero

Cause An attempt has been
made to divide an integer by
zero.

Solution Investigate the User
Program.

Error Code Error Description Field 1 Field 2

Note 4. Mathematics Error Diagnostic Information see Table 4.

0 Diagnostic
information

550

App. B-9

System Errors

PC3000 Real Time Operating System

0 0

Error Code Error Description Field 1 Field 2
800 Error Too many task function

blocks.

Cause The limit of seven task
function blocks has been
exceeded.

Solution Reduce the number of
tasks in the User Program.

Error Fastest task is too slow

Cause The fastest task has a
requested interval of greater
than 65ms.

Solution Reduce the interval of
the fastest task

Error Fastest task not have the
highest priority

Cause The fastest task does not
have the highest priority.

Solution Change the task
priorities

Error Task is not periodic.

Cause The requested task
interval is not an integer
multiple of the next fastest.

Solution Examine the task
interval.

801 Task 0

802 Task 0

Number of
the next
faster task

Task803

System Errors

PC3000 Real Time Operating SystemApp. B-10

Program
counter

Error Code Error Description Field 1 Field 2

804 Error User task watchdog

Cause A task has not
completed within its watchdog
time.

Solution Adjust the task
interval times and/or the
watchdog times of the task
function blocks.

Task

App. B-11

System Errors

PC3000 Real Time Operating System

Table 2 Mathematics operation codes
These codes are used to identify the mathematics operation errors and are supplied in
the diagnostic fields of the system errors 500, 501 and 502.

Operation codes Maths operation description

1 double to long conversion

2 double to single conversion

3 single to long conversion

11 single precision addition

12 single precision subtraction

13 single precision multiplication

14 single precision division

21 double precision addition

22 double precision subtraction

23 double precision multiplication

24 double precision division

25 double precision sqrt

26 double precision 1n

27 double precision log

28 double precision exp 1

29 double precision sin

30 double precision cos

31 double precision tan

32 double precision asin

33 double precision acos

34 double precision atan

35 double precision mod

36 double precision expt 2

Note 1. Natural exponent

Note 2. Exponentiation

System Errors

PC3000 Real Time Operating SystemApp. B-12

EI-Bisync communications errors
The information is included here for diagnostic purposes and may be useful if a
custom interface to PC3000 is being developed, for example, for a supervisory
computer.

For further information on using Default Communications, refer to the PC3000
Communications Overview document.

The EE parameter is manually read by an EI Bisync communications link master
device, such as a supervisory system, in response to receiving a Not Acknowledged
(NAK) message. The EE parameter contains sufficient information to define the
cause of the communications error.

The EE parameter is used to report error types to the supervisory computer. The data
is a four digit hexadecimal number whose value indicates the type of error that has
occurred. The EE parameter always contains the error code applicable to the last
communications error detected by the PC3000 and consists of three fields, Error
Code, Instrument Category and Error Category.

ERROR INSTRUMENT ERROR
CODE CATEGORY CATEGORY

Bit Bit Bit Bit Bit Bit Bit Bit
15 12 11 8 7 4 3 0

Digit A Digit B Digit C Digit D

App. B-13

System Errors

PC3000 Real Time Operating System

Error codes
The set of error codes which can be read from PC3000 as part of the EE parameter
are defined in table 3.

Error code (Hex) Cause of error

General errors

00 No error

01 Invalid Mnemonic

02 Checksum Error

03 Line Error - e.g. parity, overrun, framing error

04 Read attempted on write only parameter

05 Write attepted on read only parameter

06 Invalid logical unit/channel number combination

07 Invalid data format

08 Data out of range

PC3000 Specific Errors

20 Unsupported parameter type

21 Unable to encode data

22 Composite parameter not yet supported

23 Record separator (RS) expected

24 Too many elements

25 Structure nesting incorrect

26 Internal failure

File System Errors

81 Too many open files

82 Unsupported file system

83 Incorrect file identity

84 Unknown open mode

System Errors

PC3000 Real Time Operating SystemApp. B-14

Error code Cause of error

85 No error

86 No space for directory

87 Not enough file storage

88 File does not exist

89 File exists

8A Too many files

8B File already open

8C File already open for write

8D File not open for read

8E File not open for write

8F No more file space

90 File storage unformatted

91 File name incxorrect

Instrument category number
This will always be read back as hexadecimal F.

App. B-15

System Errors

PC3000 Real Time Operating System

Table 4 LCM-Plus Maths Error Diagnostic Information

The LCM-Plus math system error provides some diagnostic information in Field 1.
The number in Field 1 should be converted into 32 binary digits. This conversion
may be done using the numeric conversion utility built into the PS tools (Alt H). A
one in any digit position can be interpreted as follows-

Category Bit Pos. Meaning
Accrued 0 0 This bit always zero
Exception 1 0 This bit always zero
Flags 2 0 This bit always zero

3 INEX An inexact result has occured since the LCM first ran. An inexact
result exception occurs when the result of a calculation cannot be
represented exacltly in the binary floating point format. This exception
is disabled in the PC3000 and inexact results will be rounded towards
the nearest value and, in the case of a tie, to the nearest even result.

4 DZ A divide by zero has occurred since the LCM first ran.
5 UNFL An underflow has occurred since the LCM first ran. An underflow

occurs when the result of a calculation is approximately <1.2x10-38 and
>-1.2x10-38. Underflow exceptions are disabled on the PC3000 and all
underflowed results will be rounded.

6 OVFL An overflow has occurred since the LCM first ran
7 IOP A BSUN, SNAN or OPERR has occurred since the LCM first ran

Exception 8 INEX1 This type of exception is disabled in PC3000
Flags 9 INEX2 This type of exception is disabled in PC3000

10 DZ A floating point division by zero has occurred
11 UNFL This type of exception is disabled in PC3000
12 OVFL An arithmetic operation has yielded a result too large to be represented

in the floating point format, e.g. approximately >3.4x1038 or <-3.4 x
1038

13 OPERR An illegal value has been used as the input to a function,
e.g. ACOS(-10.0)

14 SNAN An illegal number (SNAN) has been used in an arithmetic operation
15 BSUN A comparison has been made between two numbers one or more of

which was a NAN

Exception 16-27 0000 1100 0000 Branch/Set on unordered A comparison was made between
vector two values, at least vector one of which was a NAN.
number 0000 1100 1000 Divide by zero exception A division by zero or LOG(0.0) has

been performed.
0000 1101 0000 Operand error exception An operation was performed where the

function has no meaning for the given input e.g.ACOS(10.0)
0000 1101 0100 Overflow exception An arithmetic operation has resulted in a

value which is too large to be represented in the floating point
format, e.g. approximately >3.4x1038 or < -3.4x1038

Exception 281-31 0000 Pre-Instruction Exception An arithmetic or conditional
instruction frame type has been initiated when an exception
was pending from a previously executed, concurrent
instruction.

1001 Mid-Instruction Exception A move from a floating point
register to memory has caused an exception.

Note: The IEEE standard for binary floating-point arithmetic (IEEE P754 standard)
defines a value for floating point numbers called NAN. This stands for Not-A-
Number and is the result returned for functions such as ACOS(12.0) where no
mathematically interpretation exists.

System Errors

PC3000 Real Time Operating SystemApp. B-16

Error categories
The following error categories are defined.

Table 5 Error categories

Error category Error type
Number

Recoverable errors
0 No error found

1 Character orientated error (UART) e.g. parity

2 Message data error e.g. checksum error

Non-recoverable Errors

7 Invalid message e.g. unknown mnemonic

8 Invalid message content e.g. attemping to
write to read only parameter.

A recoverable error is defined as any error that can be corrected by re-transmission of
the same message, i.e. a supervisory computer does not have to take any other
corrective action other than to resend the message.

PC3000 Programming station system error reporting
If the Programming Station receives a “not acknowledged” (NAK) message from the
PC3000, it reads the EE error parameter. The error code is then normally displayed
as a textual message.

If the Programming Station is unable to interpret the EE code, the error code is
displayed as a four digit number as “Error XXXX”. The number is created by adding
5000 to the high byte of the EE code. For example, an error code of 81F7 would
appear on the Programming Station as “Error 5129” (note, 81 in hexadecimal is 129
decimal).

App. C-1

Scheduler Overheads, Performance and Limitations

PC3000 Real Time Operating System

APPENDIX C SCHEDULER OVERHEADS, PERFORMANCE
AND LIMITATIONS

This appendix provides further detailed information on the behaviour of the Real
Time Task Scheduler which will help you understand the system overheads,
performance and limitations of the Scheduler.

Processing of communications, I/O, function blocks and Sequential Function Charts
is all controlled by software components called handlers. These are normally run to
perform specific services to support task execution and therefore add to the task
processor utilization. Some understanding of the handlers may be useful when
considering scheduling and performance problems. This appendix also outlines the
purpose of the handlers and gives detail of their operation.

Function of handlers
Default Communications Handler (COH) :-

The COH provides communications on all LCM ports which have not been
defined by a running User Program for use with a specific communications
protocol, see paragraph Default Communications, in the Chapter 1 Overview.

I/O Handlers (IOH) :-

There are two I/O handlers, one for fast I/O and another for slower I/O; referred
to in the following text as the Fast IOH and Slow IOH . In general digital I/O is
handled by the fast I/O handler and analogue I/O by the slower I/O handler. The
I/O handlers control the transfer of data between I/O modules and the LCM.

Function Block Handler (FBH) :-

The function block handler controls the execution of all the function blocks
within a task.

Sequence Handler (SEH):-

The sequence handler controls the execution of the Sequential Function Charts
(SFCs) within the User Program.

PC3000 Real Time Operating SystemApp. C-2

Scheduler Overheads, Performance and Limitations

Allocation of handlers to tasks
The handlers are allocated to tasks as follows:

FBH

The FBH is run in every task .

SEH

The SEH is executed in the task which contains the SFCs.

COH

The COH is allocated to the fastest task and does not add any significant
processing overhead if there are no communications active on any ports.
However, it may be necessary to move the communications execution into a
slower task if there is significant communications activity. This can be achieved
by associating an EI_Bisync_S to the port and then allocating the function block
to a slower task.

The communications driver function block will then be run by the FBH in the
task to which it has been allocated.

IOH

The Fast IOH always runs in the fastest task because all digital I/O transactions
with the modules occur at the basic tick interval.

The fastest task should have the highest priority because the I/O modules should
be read and written soon after the system tick.

The Scheduler will select a task to run the Slow IOH depending on the I/O
channel function blocks associated with the task and the task interval.

The following function blocks determine which task is used to run the Slow
IOH :

Analog_In

Analog_Out

T_Prop_Out

PIM2

PI_Smpl_Ctr

Table A Function Blocks associated with the Slow IOH

App. C-3

Scheduler Overheads, Performance and Limitations

PC3000 Real Time Operating System

Note: The task interval allocated to function blocks in table A should
not be shorter than 100ms, see Chapter Real Time Task Scheduler,
paragraph Rules when changing Task Intervals.

The Slow IOH is normally allocated to the fastest task which contains one or more
instances of the function blocks given in table A.

However, there is a limitation that the Slow IOH should run in a task with an interval
no longer than 20 times that of the Fast IOH.

Otherwise, the Slow IOH is assigned to the slowest task with an interval less than or
equal to 20 times the interval of the Fast IOH.

If there are no instances of the I/O function blocks in table A and therefore no
associated task, the Slow IOH will run with the Fast IOH in the fastest task.

Sometimes the overheads of running the Slow IOH on the fastest task can be
significant. In which case, the Scheduler can be forced to run the Slow IOH in a
slower task, by creating an instance of a T_Prop_Out channel on a spare digital
output. If this is not possible, a dummy PIM2 function block can be generated with
an empty module address. This will cause the Slow IOH to run in the slower task
allocated to these dummy channels. An error will be logged for the PIM2 function
block, indicating that there is a missing module however, in this case, this error can
be ignored.

Handler execution order
When writing User Programs some understanding of the order of execution of the
handlers can be useful.

Both Fast and Slow I/O handlers are split into Post-tick and Pre-tick routines, to
ensure that the delay between processing inputs and outputs is minimised. The
inputs are read in by the Post-tick IOH. The function blocks which may use these
inputs are then executed by the FBH. Finally the outputs are updated by the Pre-tick
IOH. This ordering ensures that an output which is soft wired to an input will
propagate within one execution of the task.

In each task, the order of execution can be summarised as follows:

1) Post-tick fast IOH (if fast IOH is in this task)

2) Post-tick slower IOH (if slower IOH is in this task)

3) FBH (function blocks assigned to this task only)

4) COH (if COH is in this task)

5) Pre-tick fast IOH (if fast IOH is in this task)

6) SEH (if Sequential Function Charts is in this task)

7) Pre-tick slower IOH (if slower IOH is in this task)

PC3000 Real Time Operating SystemApp. C-4

Scheduler Overheads, Performance and Limitations

Changing task priorities
The priority of a task is governed by the task function block’s Priority parameter and
is used to govern which task is to be executed when the Scheduler has two or more
tasks ready to run. 0 represents the highest priority and 6 the lowest. In the Chapter
Real Time Task Scheduler, only rate monotonic task configurations were considered,
i.e. the fastest task has the highest priority, with slower tasks having progressively
lower priorities.

Tasks with the same interval
Varying task priorities can benefit situations where it is necessary to have two or
more tasks with equal interval which should be executed in the correct order. A
configuration with tasks of equal interval, is valid.

Note: The priority of equal interval tasks can be in any order so long
as faster tasks have higher priority and slower tasks have lower
priority in order to remain rate monotonic ordering.

Non-rate monotonic task configurations
Figure 1 shows the scheduling of a non-rate monotonic task configuration. In the
example, the 100ms task has been given a priority which is higher than that the 50ms
task (the 100 ms task’s priority value is lower). Setting the priorities in this way
ensures that the 50ms task is not executed until the 100ms task has finished
executing.

A
pp. C

-5

Scheduler O
verheads, Perform

ance and Lim
itations

PC
3000 Real Tim

e O
perating System

Figure 1 Scheduling w
ith com

plex (non-rate m
onotronic) priority configuration

10ms 20ms 30ms 40ms
0ms

50ms 60ms 70ms 80ms

10ms Task
Priorty

50ms Task
Priority 2

100ms Task
Priorty 1

Tick

90ms
100ms

110ms 120ms 130ms 140ms 150ms 160ms 170ms 190ms
200ms

210ms 220ms180ms 230ms

PC3000 Real Time Operating SystemApp. C-6

Scheduler Overheads, Performance and Limitations

Problems with overrunning using non-rate monotonic tasks
In figure 1 the first execution of the 50ms task following the 100ms task is close to
overrunning. There is always a high risk of overrunning when using non-rate
monotonic task configurations. Figure 2 shows the effect of an overrunning non-rate
monotonic User Program.

Unlike a rate monotonic task configuration, when overrunning occurs there may still
be some time during the execution when the PC3000 is idling.

A
pp. C

-7

Scheduler O
verheads, Perform

ance and Lim
itations

PC
3000 Real Tim

e O
perating System

Figure 2 O
verrunning caused by priority configuration

10ms 20ms 30ms 40ms
0ms

70ms 80ms

10ms Task
Priorty

50ms Task
Priority 2

100ms Task
Priorty 1

Tick

90ms
100ms

110ms 120ms 130ms 140ms 150ms 190ms
200ms

210ms 220ms180ms 230ms50ms 60ms 160ms 170ms

 Overrunning 50ms task is given highest priorty

Overrunning 50ms task terminates and is re-scheduled
immediately

PC3000 Real Time Operating SystemApp. C-8

Scheduler Overheads, Performance and Limitations

Parameter passing between tasks
When parameters are passed between tasks it may be important to know which tasks
are associated with processing the source and destination parameters.

The following points should be noted about inter-task parameter passing:

1. There is no buffering of parameters between tasks, i.e. there is no guarantee that
two parameters from the same task referred to from another task will be from the
same task execution, i.e. the parameter values may not be coherent.

2. Evaluation of soft wiring is executed in the destination task.

3. The writing of parameter values is indivisible for example, the writing of the
result of a wiring expression, say a 100 character long string, into the function
block parameter to which it is wired, cannot be interrupted by any other task.
This ensures that a partially updated string would never be read by any task.

App. C-9

Scheduler Overheads, Performance and Limitations

PC3000 Real Time Operating System

Coherency limitations
The following example shown in figure 3 demonstrates the effect of passing
parameters between tasks without having coherent values.

Figure 3 An example of inter task parameter passing incoherence

The wiring:

C.Process_Val:= (A.Process_Val = B.Process_Val);

is evaluated by the Fast (10ms) task. It might be assumed that C.Process_Val would
always be 1 i.e. On; this is not always the case. In the example, the priority of the

Fast

T#10ms

Task

Interval

C

Bool

Slow

Task

A

Bool

Process_Val

B

Bool

Process_Val

0 Priority

T#100ms Interval

1 Priority

= Process_Val

A.Process_Val :=1 (*On*)
B.Process_Val :=1 (*On*)

A.Process_Val :=0 (*Off*)
B.Process_Val :=0 (*Off*)

PC3000 Real Time Operating SystemApp. C-10

Scheduler Overheads, Performance and Limitations

Fast (10ms) task is highest which implies that the wiring will be evaluated indivisibly
(without interruption from the Slow (100ms) task). However, the Fast task can
interrupt the assignments to A.Process_Val and B.Process_Val in the Slow
task.

This gives rise to the possibility of C.Process_Val being 0 i.e. Off. Table 5
shows that the possible values of C when the Fast task is executed and interrupts the
100ms task.

SFC AProcess_Val B.Process_Val C.Process_Val

0(*Off*) 0(*Off*) 1(*On*)1

A.Process_Val:=1 (*On*)2

1(*On*) 0(*Off*) 0(*Off*)1

B.Process_Val:=1(*On*)2

1(*On*) 0(*On*) 0(*On*)1

A.Process_Val:=0(*Off*)2

1(*Off*) 0(*On*) 0(*Off*)1

B.Process_Val:=0(*Off*)2

1(*Off*) 0(*Off*) 0(*On*)1

Note 1. Fast (10ms) Task executes

Note 2. Slow (100ms) Task executes

Table 5 Example Of 100ms sequential function chart task interrupted by
10ms wiring task

.

Avoiding problems with parameter incoherence
Parameter value incoherent can be avoided using the following techniques:

Avoid using expressions which require coherent values from another task, such as
edges (changes in digital (BOOL) values) which occur at the same time in the same
task and are then fed into a single function block in another task.

In the previous example, the BOOL function block instance C can be moved to the
Slow task. Because the BOOL function blocks would then all be in the same task,
the values of A and B will be coherent when C is evaluated.

Where an input is wired to an expression which includes parameters from more than
one task, it may be necessary to have a user variable function block instance in each
task (i.e. other than the destination task). These would then be wired to hold the
value of a partial result by accessing parameters in the same task, as shown in
Figure 4.

This technique is only applicable where there is just one partial result per task.

Ti
m

e

App. C-11

Scheduler Overheads, Performance and Limitations

PC3000 Real Time Operating System

Figure 4 Retaining coherence by using partial results

Delays caused by inter-task parameter passing
Parameter values can be passed between tasks either explicitly through wiring,
Sequential Function Chart Step assignments or implicitly through connection to I/O
modules via the I/O handlers. These inter-task parameter links can, in some cases
cause extended propagation delays. Although not usually important, the following
paragraphs provide details on some of the effects which may occur.

Task Bool

Task

Task

Bool

Bool

Bool

Bool

Bool

Bool

Bool
OR ORT#10ms

0

T#100ms

1

A

B

C

D

E

D_eq_E

B_eq_E

=

=

FFast

Medium

Slow

Process_Val

Process_Val

Process_Val

Process_Val

Process_Val

Process_Val

Process_Val

Process_Val

T#1s

2

Interval

Priority

Interval

Priority

Interval

Priority

PC3000 Real Time Operating SystemApp. C-12

Scheduler Overheads, Performance and Limitations

Parameter passing between function blocks in different
tasks

Set

Bool

Reset

Bool

Process_Val

Latch
Bistable_SD

Process_Val

Set

Reset

Q_Output

Q
Bool

Process_Val

task B

task A

Figure 5 Example of typical chained wiring

If the function block instances are in different tasks, as shown in Figure 5, it is
possible to have a propagation delay longer than the execution times of the blocks.
This is due to the task priorities modifying the order of execution.

Consider the situation where the instances Set, Reset and Q are in task A with
priority 2 and the instance Latch is in another task B of priority 1. To simplify the
example, consider the case where both tasks have the same interval.

The higher priority task B is executed first. This task evaluates the inputs Latch.
Set and Latch.Reset first, taking the values of Set.Process_Val and
Reset.Process_Val from the last execution of the Bool function block instances Set
and Reset. The Latch function block then executes to produce the Q_Output. Once
the higher priority task has executed, the Bool function blocks in the lower priority
task A are processed. Set.Process_Val and Reset.Process_Val are assigned their
new values and Q.Process_Val is set to the new value of Latch.Q_Output. (Where
these values come from/go to is not relevant to this example.)

To summarise, a delay of one execution cycle occurs between the changing of
Set.Process_Val and/or Reset.Process_Val and the corresponding Latch.Q_Output
and Q.Process_Val being assigned.

If the intervals are different, the delay calculation becomes more complex. If the
interval of the higher priority task is longer than that of the lower priority task then

App. C-13

Scheduler Overheads, Performance and Limitations

PC3000 Real Time Operating System

the effect is equivalent to one (high priority task) execution cycle delay in the Set and
Reset function block instances. If the interval of the lower priority task is longer than
that of the higher priority task then the effect is equivalent to one (low priority task)
execution cycle delay in updating the Q function block instance.

Delays in writing to function blocks from SFCs
Because the Sequential Function Charts (SFCs) are executed (by the SEH) at the end
of the task to which they are assigned, delays may occur that are similar to those for
function block wiring.

Care must be taken when assigning a value to an input of a function block from the
sequence (SFC) and then taking action on the output of that function block. For
example the following SFC will not work.

Figure 6 Example of incorrect control of a function block from an SFC

In the example shown in Figure 6 the function block intstance ramp may not have
executed by the time ramp. Ramp_End is tested by the sequence handler (SEH) and
subsequently to ramp. Mode and ramp. Setpoint being written. If this is the case and
ramp.Ramp_End was true prior to the step executing then execution of the sequence
will move on even though the ramp has not reached 200.

The simplest method of circumventing this problem is to test for ramp.Output =
ramp.Setpoint as in Figure 7. Another method which may be more appropriate
in other, similar situations would be to add a time delay equal to the interval of the
function blocks task, in order to ensure that the block executes.

e.g. ramp.Ramp_End AND Setup.Time>=T#100ms where ramp is in a
100ms task

ramp.Mode: = 1 (*RUN*);
ramp.Setpoint: = 200;

ramp.Ramp_End

Setup Step

PC3000 Real Time Operating SystemApp. C-14

Scheduler Overheads, Performance and Limitations

Figure 7 Example of correct control of a function block from SFC

Delays in connection with I/O
The Fast and Slow I/O handlers, see paragraph Allocation of Handlers to Tasks,
transfer the I/O values between the I/O channel function blocks and their associated
I/O modules. Because these are assigned to tasks in a similar way to function blocks,
there is an associated propagation delay.

Each I/O Handler is processed in two phases by Post-tick and Pre-tick routines to
optimise I/O processing time. In tasks that contain an I/O handler, the Post-tick
routine of the IOH is executed first to fetch inputs, the function blocks are then
executed, followed by the Pre-tick routine to update the outputs. This ensures that
values can be propagated from inputs to outputs in one task execution cycle.

Because of inter-task parameter passing, a delay is unavoidable when evaluating I/O
values in a task which is not associated with the appropriate I/O handler. Consider
an example where the Fast I/O handler is associated with a 10ms task and wiring
connects Digital_In to a Digital_Out function blocks both running in a 100ms task of
lower priority. In this case the propagation delay from digital input to output would
be between 10ms best case and 120ms worse case, depending on exactly when the
input value changes.

Note: Although the wiring between the Digital_In to Digital_Out is
evaluated during the 100ms task, the output will not be written out to
the digital I/O module until the next execution of the Fast IOH.

ramp.Mode: = 1 (*RUN*);
ramp.Setpoint: = 200;

ramp.Output = ramp.Setpoint

Setup Step

App. D-1PC3000 Real Time Operating System

Example Task Configurations

APPENDIX D EXAMPLE TASK CONFIGURATIONS
These example task configurations are provided to assist with the initial selection of
tasks suitable for different types of process application.

Example 1

Task Name Interval Priority

Fast 5ms 0

Normal 100ms 1

Slow 500ms 2

These tasks will be suitable for an application that requires fast digital responses but
also requires slower analogue function blocks.

The Fast task is used for a small selected set of digital function blocks and digital I/O
channel function blocks that are required to have fast response times.

The Normal task can be used for PID control loops that have a time constants
typically greater than 10 seconds, e.g. those controlling temperature. Digital function
blocks concerned with slower acting devices and the Sequential Function Charts are
also run in this task.

The Slow task is used to run analogue function blocks used for devices with slow
time constants, i.e. greater than 50 seconds or for which the monitoring of rapid value
changes is not important.

Note: In this case, the fast IOH will be processed in the Fast task, and
the slow IOH will run in the Normal task.

Example 2

Task Name Interval Priority

Fast 5ms 0

Normal 100ms 1

Slow 500ms 2

These tasks will be suitable for an application having a large number of digital and
analogue function blocks but where response times slower than provided by the
default tasks are acceptable. The Slow task is used to run a communications function
block responsible for issuing a log message to a printer.

The Fast task is used for all digital function blocks and digital I/O channel function
blocks.

Example Task Configurations

PC3000 Real Time Operating SystemApp. D-2

The Normal task can be used for all analogue function blocks and the Sequential
Function Chart execution.

The Slow task is used to run a communications function block, such as
Raw_Comms, to issue a log message to a printer. In the case of the Raw_Comms
block, two executions of the block are needed to transmit a message, i.e. a message
will be logged every 10 seconds.

Note: In this example, the fast IOH will be processed in the Fast task,
and the slow IOH will run in the Normal task.

Example 3

Task Name Interval Priority

Fast 1 20ms 0

Fast 2 20ms 1

Normal 200ms 2

In this example, there are two fast tasks of different priority. These are required
because there is a need for both fast digital responses and high speed
communications.

The Fast1 task is used for all digital function blocks and digital I/O channel function
blocks.

The Fast2 task is allocated to all communications function blocks.

The Normal task is used to run all analogue function blocks and the Sequential
Function Charts.

Where a User Program requires both fast communications and digital functions, it is
advisable to run these in separate tasks.

Note: In this example, the fast IOH will be processed in the Fast1
task, and the slow IOH will run in the Normal task.

	Preface
	Chapter 1-Introduction
	Chapter 2 Modes of operation
	Chapter 3 - Real time system state information
	Chapter 4 - Real time clock
	Chapter 5 System watchdog and fault recovery
	Chapter 6 - I/O Sub system
	Chapter 7 Real time task scheduler
	Chapter 8 - Memory usage
	Appendix A Terminology
	Appendix B System errors
	Appendix C Scheduler overheads, performance and limitations
	Appendix D Example task configurations

