ULTRA SLIMPAK ${ }^{\circledR}$ II model WV108-2000

DC Input Limit Alarm

Installation and Calibration I nstructions

NOTE: The unit has been shipped with the Power Clips attached. Please remove the clips before installing the module on the DIN rail. If the Power Clips are chosen as the means to route power, they can be installed once the modules are in place on the DIN rail.

DIN Rail Mounting

The WV108 mounts on a 35 mm TS35 DIN rail, by simply hooking one side of the mounting foot over the rail and pressing the module towards the rail until it locks into place. To remove the unit from the rail, place the tip of a flat-bladed screwdriver under the release clip on either the top or the bottom of the module and pry up until the module releases from the rail. See Figure 1.

Figure 1

Wiring Connections

Pin	Description
11	N.O. Relay B
12	Com. Relay B
13	N.C. Relay B
21	DC Power (+)
22	DC Power (-)
23	No Connection
41	Analog Input (+)
42	Analog Input (-)
43	24 VDC Excitation (+)
51	N.O. Relay A
52	Com. Relay A
53	N.C. Relay A

Power Connections

The power jumper clips (see Figure 2) are used to distribute power to a maximum of 16 modules. In applications using more than 16 modules, power wiring must be connected to the first and last module, and distributed to the remaining modules using the power clips. This technique allows for "hot swapping" of a module without interrupting power to the remaining units.

Opening the Case

The case can be opened by simultaneously pressing in on the two ribbed tabs located at the top and bottom of the front cap of the case and sliding out the circuit board. This provides easy access to the DIP switch for range selection. To close the case, slide the board back in
until the two tabs lock firmly in place. This may require pressing on the front side of the upper and lower terminal blocks for a positive fit. The board slides in where the switch and the switch position chart on the case can be viewed together.

Figure 2

Description

There are two standard versions of the WV108, the WV108-2000 and the WV108-2001. The WV108-2000 uses standard (non-latching) relays - when a power loss occurs, the form "C" relay transitions to its "relaxed" state. The WV108-2001 uses latching relays - when a power loss occurs, the relay remains in its current position. A manual reset is required to change the state of the relay.

Input Range Configuration

Unless otherwise specified, the factory presets the Model WV108 as follows:

Input:	Current
Range:	$\pm 100 \mathrm{~mA}$
Output:	Dual, SPDT
Trip:	A: HI, B: LO
Failsafe:	No
Deadband:	A, B: minimum

1. For other ranges, refer to the Switch Settings Table. Reconfigure switches S1 and S2 for the desired input type and range.
2. Set position 1 of S1 to ON if a WVC16 will be utilized and remote calibration capability is desired.
3. Set position 2 and 3 of S 1 to ON for a Hi trip setpoint or to OFF for a Low trip setpoint. (A can be set for a high trip and B can be set for a low trip.)
4. Set position 4 of S1 to ON for failsafe operation (e.g. alarm trips upon power failure) or OFF for non-failsafe operation (only on the -2000 version).

Switch Settings

Diagnostic LEDS

Other than when executing the pushbutton calibration routine, the LED's operate under the following conditions:

RUN (Green): On when the unit is powered. Flashes at 2 Hz when the input is under range. Flashes at 8 Hz when the input isover range.

SETPOINT A (Red): On when Setpoint A is tripped. On when setting Setpoint A. Flashes while calibrating the input level.

SETPOINT B (Red): On when Setpoint B is tripped. On when setting Setpoint B. On while calibrating the input level.

An Over/Under Range condition exists at or near the operational range limits.

Operation

The WV108 limit alarm setpoints can be configured for HI or LO, failsafe or non-failsafe operation (failsafe is only available on the 2000). Both setpoints have individually adjustable deadbands. In a tripped condition, the setpoint is exceeded and the appropriate red LED will illuminate. The trip will reset only when the process falls below the HI release point or rises above the LO release point (see Figure 3). Minimum deadband values are listed in the specifications.

Figure 3: Limit alarm operation and the effect of deadband

For proper deadband operation, the HI setpoint must always be set above the LO setpoint. In failsafe operation (-2000 only), the relay is energized when the process is below the HI setpoint or above the LO setpoint (opposite for non-failsafe). In the failsafe mode, a power failure results in an alarm state output.

Calibration

For best results, calibration should be performed in the operating environment, mounted on a DIN rail, allowing at least one hour for thermal equilibrium of the system. The input range and setpoints can be calibrated in any order. Refer to the calibration flow chart, Figure 6 . This procedure will set the input range first and then proceed to the setpoints.

NOTE:

Setting the input range is NOT required. You can select a full scale range from the DIP switch selections and then proceed to step six and calibrate the setpoints within that DIP switch range.

1. Connect the input to a calibrated DC source. Apply power and allow the system to reach thermal equilibrium.
2. Adjust the input signal to the desired maximum and observe that the Green LED is on or flashing. Push and hold the CAL button for 4 seconds. The Green LED will be flashing and the upper Red LED will be on. Press the CAL button twice. This brings you to the beginning of the input cal section. (At this point, you can exit the calibration procedure without saving new data by pressing the CAL button.) The Green and both Red LEDs should be flashing. Press and hold the CAL button for 10 seconds or until the Upper Red LED is flashing. Press and hold the CAL button for 4 seconds. The upper Red LED will be flashing and the Green and lower Red LEDs will be on.
3. Apply the maximum input signal level and push the CAL button. The upper Red LED will still be flashing and the lower Red LED will be on.
4. Apply the minimum input signal level and push the CAL button. All three LEDs should be on.
5. Push the CAL button again. The calibration data is now saved. The Green LED should be on if the input is within the calibrated range.
6. The Setpoints can now be set. This procedure assumes Setpoint A is a HI trip setpoint and Setpoint B is a LOW trip setpoint. Unlike previous models, there is no deadband pot to adjust - simply set the trip point and the release point for each relay.

Adjust the input signal to the desired trip voltage for Setpoint A and observe that the Green LED is on. Push and hold the CAL button for 4 seconds. The Green LED will be flashing and the upper Red LED will be on. Press and hold the CAL button for 4 seconds. Both the upper Red LED and the Green LED will be flashing.
7. With the trip voltage applied to the input, press the CAL button. The Green LED will now be flashing.
8. For the minimum deadband, press the CAL button, otherwise, reduce the input voltage to the desired release point and press the CAL button. All three LEDS will be on. To save the calibration, press the CAL button. The Green LED should be on.
9. Adjust the input signal to the desired trip voltage for Setpoint B and observe that the Green LED is on. Push and hold the CAL button for 4 seconds. The Green LED will be flashing and the upper Red LED
will be on. Press the CAL button once. The lower Red LED will be on and the Green LED will be flashing.
10. Press and hold the CAL button for 4 seconds. Both the Lower Red LED and the Green LED will be flashing. With the trip voltage applied to the input, press the CAL button. The Green LED will now be flashing.
11. For the minimum deadband, press the CAL button, otherwise, increase the input voltage to the desired release point and press the CAL button. All three LEDS will be on. To save the calibration, press the CAL button. The Green LED should be on.

Relay Protection and EMI Suppression

When switching inductive loads, maximum relay life and transient EMI suppression is achieved using external protection (see Figures 4 and 5). Place all protection devices directly across the load and minimize all lead lengths. For AC inductive loads, place a properly rated MOV across the load in parallel with a series RC snubber. Use a 0.01 to 0.1 uF pulse film capacitor (foil polypropylene recommended) of sufficient voltage, and a $47 \mathrm{Ohm}, 1 / 2 \mathrm{~W}$ carbon resistor. For DC inductive loads, place a diode across the load (PRV > DC supply, 1N4006 recommended) with (+) to cathode and (-) to anode (the RC snubber is an optional enhancement).

NOTE:
To reload factory calibration data, hold down the button while the unit powers up. The green LED will flash 10 times and then the red LED will begin to flash. Release the button once the red LED begins flashing and the factory calibration data will be reloaded.

Specifications

Inputs
Voltage Input Ranges: $\pm 20 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$ \& $\pm 200 \mathrm{~V}$
Impedance: >100k ohms; Overvoltage: 200Vrms, max.
Current Input Ranges: $\pm 10 \mathrm{~mA} \& \pm 100 \mathrm{~mA}$
Impedance: 20 ohms, typical; Overcurrent: 170 mA rms, max Overvoltage: 60VDC

Minimum Deadband

Range	Deadband
$\pm 20 \mathrm{mV}$	0.2\% (80uV)
$\pm 200 \mathrm{mV}$	0.2\% (800uV)
$\pm 2 \mathrm{~V}$	0.1\% (4mV)
$\pm 20 \mathrm{~V}$	0.1\% (40mV)
$\pm 200 \mathrm{~V}$	0.025\% (100mV)
$\pm 10 \mathrm{~mA}$	0.1\% (20uA)
$\pm 100 \mathrm{~mA}$	0.025\% (50uA)

Response Time

Dynamic Deadband: Relay status will change when proper setpoint/process condition exists for 100 mSec or greater
Normal Mode: <250mSec (analog filtering)

Setpoint Effectivity

Setpoints are adjustable (by pushbutton) over 100% of the selected input span

Repeatability

$>200 \mathrm{mV} / 10 \mathrm{~mA}: 0.1 \%$ of full scale (constant temperature)
$<200 \mathrm{mV} / 10 \mathrm{~mA}: 0.2 \%$ of full scale
Relay Contacts
2 SPDT (2 form C) Relays; 1 relay per setpoint
Current rating (general use) 120VAC: 5A; 240VAC: 2A; 28VDC: 5A
Material: Gold flash over silver alloy
Electrical Life: 10^{5} operations

Reset Switch

For unlatching the relay once the process is no longer in the alarm state (WV108-2001 only)

e" Invensys

EUROTHERM
Eurotherm Controls
741-F Miller Drive
Leesburg, VA 20175-8993
703-443-0000
info@eurotherm.com

Local Range Selection
By DIP switch
Stability
$\pm 100 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$

Common Mode Rejection

120dB @ DC
$>90 \mathrm{~dB}$ @ 60Hz, or better
Isolation
≥ 1800 VDC or peak AC between contacts, input \& power
ESD Susceptibility
Capable of meeting IEC 801-2 level 3 (8 kV)
Humidity (non-condensing)
Operating: 15 to $95 \% \mathrm{RH} @ 45^{\circ} \mathrm{C}$
Soak: 90% RH for 24 hrs @ $60^{\circ} \mathrm{C}$
Temperature
Operating: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Power
9 to 30VDC
1.2 W typical, (3.25W max w/ both relays energized)

Excitation Voltage
24VDC @ 20mA
Host Module Interface IR link
Size
DIN rail case -0.69 " wide (17.5 mm), refer to Dimensions drawing
Agency Approvals (EMC \& Safety)
CE, EN61326, EN61010-1
UL and CSA Combined mark

Dimensions
Dimensions are in mm (inches)

Factory Assistance

For additional information on calibration, operation and installation contact our Technical Services Group:
703-669-1318
actionsupport@eurotherm.com

HA136738WV108 Rev - Copyright© Eurotherm, Inc 2004

